Answer:
0.5 moles of LiOH will absorb 5.6 L of 
Explanation:
According to law of conservation of mass, the sum of mass on the reactant side must be equal to the sum of mass on product side.
The balanced chemical equation is:

2 moles of LiOH absorb 1 mole of
i.e. 22.4 Liters at STP
0.5 moles of LiOH absorb
=
0.5 moles of LiOH will absorb 5.6 L of 
Answer: Exocytosis is the reverse of endocytosis. Quantities of material are expelled from the cell without ever passing through the membrane as individual molecules. By using the processes of endocytosis and exocytosis, some specialized types of cells move large amounts of bulk material into and out of themselves.
Explanation:
The kind of thermochemical equation represented below
that is
CaO(s) + H2O (l) = Ca(OH)2 (s) +65.2 kj
is exothermic ( answer B)
This is because its heat energy has a + sign meaning that heat is released by the reaction above.
696.32 mmHg is the final pressure of the gas.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas.
Given data:
= 720 mmHg
= ?
= 2.5 mol
= 3.2 mol
= 34 L
= 45 L
Formula
Combined gas law

= 696.32 mmHg
Hence, 696.32 mmHg is the final pressure of the gas.
Learn more about an ideal gas equation here:
brainly.com/question/19251972
#SPJ1
Answer:
3 is the coefficient of oxygen.
Explanation:
Chemical equation:
CH₃OH + O₂ → CO₂ + H₂O
Balanced chemical equation:
2CH₃OH + 3O₂ → 2CO₂ + 4H₂O
The given reaction is combustion reaction. In this reaction methanol is burn in the presence of oxygen and produces carbon dioxide and water.
The balance equation show reaction also follow the law of conservation of mass.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.