Answer: [N2]₀ = 10M and [H2]₀ = 11M
Explanation: To calculate the initial concentration, you would have to set up an ICE table, which is an organized way of tracking known quantities or the ones you want to find. ICE stands for:
I is initial amount;
C is change in concentration;
E is for equilibrium concentration;
For the mixture,
N2 3H2 2NH3
I [N2]₀ [H2]₀ 0
C - x -3x +2x
E [N2]₀ - x =8 [H2]₀ - 3x =5 2x =4
With the product, we can find "x":
2x=4
x=2M
With x=2, find the concentrations:
[N2]₀ - x = 8
[N2]₀ = 10M
[H2]₀ - 3x = 5
[H2]₀ = 11M
The initial concentrations of nitrogen gas [N2] is 10.0 M and of hydrogen gas [H2] is 11.0 M.
To determine the amount of a substance in units of moles from units of grams, we need to determine the molar mass of the substance. <span>The </span>molar mass<span> is the </span>mass<span> of a given chemical element or chemical compound (g) divided by the amount of substance (mol). For CuF2, the molar mass </span><span>101.543 g/mol. We calculate as follows:
100.0 g CuF2 ( 1 mol / 101.543 g) = 0.98 mol CuF2</span>
Explanation:
FeCl3 + <u>3</u> KSCN ➡ <u>3</u> KCl + Fe(SCN)3
Hope it helps
Answer:
kwkrofofoxosowoqoaododpdprofpcoxozoskawkdjdn
Explanation:
sklwlrlfclxoskkekrdododosoekekrkrododowoekekfkdodkwkeororkdkdkwejrjrkfidiwi3jr
Answer:
Carbon dioxide can be collected over water. Carbon dioxide is slightly soluble in water and denser than air, so another way to collect it is in a dry, upright gas jar.
Explanation: