The forces acting on the elevator are:
Gravity force
Tension force
Air resistance
Explanation:
Let's go through each of the forces listed and see which ones are acting on the elevator.
- Normal force: NO. The normal force is a force exerted by a surface whenever there is another object "pushing" on it. For instance, when a box is at rest on a table, the box is "pushing" on the table (due to its weight), and the table "pushes back" on the box, upward, in order to balance its weight: this is the normal force. In this case, the elevator is lifted, so it is not pushing on anything, therefore there is no normal force.
- Gravity force: YES. The force of gravity acts on every object located in the gravitational field of the Earth; it pulls downward, and its magnitude is
, where m is the mass of the object and g is the acceleration of gravity. - Applied force: NO. Here there is no applied force, since there is nobody "pushing" or "pulling" the elevator.
- Friction force: NO. As we are considering the forces on the elevator, and the elevator is not sliding against any surfaces, there is no force of friction. (The force of friction acts whenever there are two surfaces sliding against each other, which is not the case here)
- Tension force: YES. The tension force is the force exerted by a rope or a string when pulling an object. In this case, there are four ropes pulling the elevator, therefore there are 4 forces of tension acting on the elevator, upward.
- Air resistance: YES. As the elevator is moving through the air, the interaction between the molecules of air with the surface of the elevator produces a force (called air resistance) that "resists" the motion of the elevator, therefore pushing downward. However, the magnitude of this force is negligible in this case.
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
The motorbike reaches 100 km/h in 3.5 seconds
Explanation:
The motion of the motorbike is a uniformly accelerated motion (= constant acceleration), therefore we can use the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time
For the motorbike in this problem,
u = 0 (it starts from rest)
is the final velocity
is the acceleration
Solving for t, we find the time it takes for the bike to reach that velocity:

Learn more about accelerated motion:
brainly.com/question/9527152
brainly.com/question/11181826
brainly.com/question/2506873
brainly.com/question/2562700
#LearnwithBrainly
Answer:
weight on earth is mg
which is 5*9.8
49 Newton
weight on moon is 1/6 th of weight on earth
1/6*49
8.166 Newton..
Answer:

Explanation:
We know that the gravity on the surface of the moon is,
<u>Gravity at a height h above the surface of the moon will be given as:</u>
..........................(1)
where:
G = universal gravitational constant
m = mass of the moon
r = radius of moon
We have:
is the distance between the surface of the earth and the moon.
Now put the respective values in eq. (1)

is the gravity on the moon the earth-surface.