1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sladkih [1.3K]
2 years ago
9

2. A body is thrown vertically upward with a speed of 100 m/s.The time taken to be

Physics
1 answer:
Pachacha [2.7K]2 years ago
4 0

Answer:

b. 20 sec

Explanation:

y = y₀ + v₀ t + ½ g t²

0 = 0 + (100) t + ½ (-10) t²

0 = 100t − 5t²

0 = t (100 − 5t)

t = 0, t = 20

The body lands after 20 seconds.

You might be interested in
A coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged con
Tcecarenko [31]

Complete question:

A 50 m length of coaxial cable has a charged inner conductor (with charge +8.5 µC and radius 1.304 mm) and a surrounding oppositely charged conductor (with charge −8.5 µC and radius 9.249 mm).

Required:

What is the magnitude of the electric field halfway between the two cylindrical conductors? The Coulomb constant is 8.98755 × 10^9 N.m^2 . Assume the region between the conductors is air, and neglect end effects. Answer in units of V/m.

Answer:

The magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

Explanation:

Given;

charge of the coaxial capable, Q = 8.5 µC = 8.5  x 10⁻⁶ C

length of the conductor, L = 50 m

inner radius, r₁ = 1.304 mm

outer radius, r₂ = 9.249 mm

The magnitude of the electric field halfway between the two cylindrical conductors is given by;

E = \frac{\lambda}{2\pi \epsilon_o r} = \frac{Q}{2\pi \epsilon_o r L}

Where;

λ is linear charge density or charge per unit length

r is the distance halfway between the two cylindrical conductors

r = r_1 + \frac{1}{2}(r_2-r_1) \\\\r = 1.304 \ mm \ + \  \frac{1}{2}(9.249 \ mm-1.304 \ mm)\\\\r = 1.304 \ mm \ + \ 3.9725 \ mm\\\\r = 5.2765 \ mm

The magnitude of the electric field is now given as;

E = \frac{8.5*10^{-6}}{2\pi(8.85*10^{-12})(5.2765*10^{-3})(50)} \\\\E = 5.793*10^5 \ V/m

Therefore, the magnitude of the electric field halfway between the two cylindrical conductors is 5.793 x 10⁵ V/m

5 0
2 years ago
The equation r (t )=(2t + 4)⋅i + (√ 7 )t⋅ j + 3t ²⋅k the position of a particle in space at time t. Find the angle between the v
velikii [3]

Answer:

\theta = n\pi/2, {\rm where~n~is~an~integer.}

Explanation:

We should first find the velocity and acceleration functions. The velocity function is the derivative of the position function with respect to time, and the acceleration function is the derivative of the velocity function with respect to time.

\vec{v}(t) = \frac{d\vec{r}(t)}{dt} = (2)\^i + (\sqrt{7})\^j + (6t)\^k

Similarly,

\vec{a}(t) = \frac{d\vec{v}(t)}{dt} = (6)\^k

Now, the angle between velocity and acceleration vectors can be found.

The angle between any two vectors can be found by scalar product of them:

\vec{A}.\vec{B} = |\vec{A}|.|\vec{B}|.\cos(\theta)

So,

\vec{v}(t).\vec{a}(t) = |\vec{v}(t)|.|\vec{a}(t)|.\cos(\theta)\\36t = \sqrt{4 + 7 + 36t^2}.6.\cos(\theta)

At time t = 0, this equation becomes

0 = 6\sqrt{11}\cos(\theta)\\\cos(\theta) = 0\\\theta = n\pi/2, {\rm where~n~is~an~integer.}

7 0
3 years ago
Because of your success in physics class you are selected for an internship at a prestigious bicycle company in its research and
tiny-mole [99]

To develop the problem it is necessary to apply the equations related to the moment of inertia.

The given values can be defined as,

M = 1.0 kg

r = 0.5 m

m = 10 g

I = 0.280 kg.m^2

According to the definition of the moment of inertia applied to the exercise we can arrive at the equation that,

I = I_{rim} + n * I_{spoke}

Where n is the number of spokes necessary to construct the wheel.

I_{rim} = M*r^2 = 1.0 * 0.5^2

I_{spoke} = \frac{1}{3} * m * r^2 = \frac{1}{3}* 10 * 10^-3 * 0.5^2

Replacing the values at the general equation we have,

0.280 = 1.0 * 0.5^2 + n * (1/3 * 10 * 10^-3 * 0.5^2 )

Solving for n,

n = 36

Therefore the number of spokes necessary to construct the wheel is 36

PART B) The mass of the wheel is given by the sum of all masses and the total spokes, then

M_w= M + n*m

M_w = 1.0 + 36* 10 * 10^{-3} Kg

M_w = 1.36 Kg

Therefore the mass of the wheel must be of 1.36Kg

4 0
3 years ago
Hanna tosses a ball straight up with enough speed to rermain in the air for several seconds
Ipatiy [6.2K]
What a relief !  That gives her time to step out of the way, before the ball
comes crashing down in the same place where she was standing.
7 0
3 years ago
What effect did printing with movable type have on people during the Renaissance?
vodka [1.7K]

Answer: He didn't invent printing. He didn't even invent movable type. He often ran into legal trouble and, when he died in 1468, he did so with little money or glory.

Explanation:

3 0
3 years ago
Other questions:
  • Which theory proposed by Galileo is considered a “big mistake of his life”? What did the theory state, and why was it a “big mis
    5·2 answers
  • _________ is affected by your brakes, tires, the road surface, and speed.
    15·1 answer
  • What force is required to give an object with mass 2000 kg an acceleration of 3.5 m/s2
    9·2 answers
  • An important news announcement is transmitted by radio waves to people sitting next to their radios 42 km from the station and b
    14·1 answer
  • Calculate the density 1.33*10⁻⁷ gcm⁻³ into kgm⁻³.
    10·1 answer
  • If we can measure the period of a star's wobble caused by an orbiting planet, we know the _______.
    15·1 answer
  • How many protons neutrons and electrons are in fluorine and in bromine
    8·1 answer
  • If you rub a balloon on a sweater, which will have more electrons?
    13·1 answer
  • Please help, i’ll give brainliest!!
    12·1 answer
  • It is 2058 and you are taking your grandchildren to Mars. At an elevation of 34.7 km above the surface of Mars, your spacecraft
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!