When KCL, which is an ionic compound is added to water it will dissociate and or ionize completely forming the ions of K+ and Cl-. The resulting solution would be a neutral solution, as the K+ is a cation of a strong base and Cl- is an anion of a strong acid, and whenever a strong base reacts with a strong acid, a neutral salt is produced
Answer : The correct option is, +91 kJ/mole
Solution :
The balanced cell reaction will be,

Here copper (Cu) undergoes oxidation by loss of electrons, thus act as anode. Lead (Pb) undergoes reduction by gain of electrons and thus act as cathode.
First we have to calculate the standard electrode potential of the cell.
![E^0_{[Pb^{2+}/Pb]}=-0.13V](https://tex.z-dn.net/?f=E%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D%3D-0.13V)
![E^0_{[Cu^{2+}/Cu]}=+0.34V](https://tex.z-dn.net/?f=E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D%3D%2B0.34V)

![E^0_{cell}=E^0_{[Pb^{2+}/Pb]}-E^0_{[Cu^{2+}/Cu]}](https://tex.z-dn.net/?f=E%5E0_%7Bcell%7D%3DE%5E0_%7B%5BPb%5E%7B2%2B%7D%2FPb%5D%7D-E%5E0_%7B%5BCu%5E%7B2%2B%7D%2FCu%5D%7D)

Now we have to calculate the standard Gibbs free energy.
Formula used :

where,
= standard Gibbs free energy = ?
n = number of electrons = 2
F = Faraday constant = 96500 C/mole
= standard e.m.f of cell = -0.47 V
Now put all the given values in this formula, we get the Gibbs free energy.

Therefore, the standard Gibbs free energy is +91 kJ/mole
Answer:
b. Its concentration is half that of the chloride ion
Explanation:
As the calcium chloride formula is CaCl2
CaCl2 <--> Ca + 2 Cl-
Answer:
CH2FCOOH > CH2ClCOOH > CH2BrCOOH > CH3COOH
Explanation:
CH2FCOOH > CH2ClCOOH > CH2BrCOOH > CH3COOH
More electronegative atom of halogen is , stronger acid will be.