The memory phenomena Gina is experiencing is Proactive interference. <span>This happens when old information hampers the recall of newer information. An example would be, when trying to recall a new phone number, the old phone number keeps popping up in your mind, to the point when it is very difficult to remember the new number.</span>
Answer:
See explanation below
Explanation:
To get a better understanding watch the picture attached.
In the case of the reaction with Bromine, the -N(CH₃)₂ is a strong ring activator, therefore, it promotes a electrophilic aromatic sustitution, so, in the mechanism of reaction, the lone pair of the Nitrogen, will move to the ring by resonance and activate the ortho and para positions. That's why the bromine wil go to the ortho and para positions, mostly the para position, because the -N(CH₃)₂ cause a steric hindrance in the ortho position.
In the case of the reaction with HNO₃/H₂SO₄, the acid transform the -N(CH₃)₂ in a protonated form, the anilinium ion, which is a deactivating of the ring, and also a strong electron withdrawing, so, the electrophile will go to the meta position instead.
Hope this helps.
P1/T1 = P2/T2
125⁰C = 398.15 k
182⁰C = 455.15 k
1.22/398.15 = p2/455.15
p2= 1.39atm
the pressure of the gas be after the temperature change is 1.39 atm
If the value of H is positive, it means you have to add that much heat to complete the reaction. If H is negative, it means that much heat is released during the chemical process. Because it is -73 kJ, 73 kJ of heat are released in the reaction.
Answer: -
The hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.
Explanation: -
Temperature of the hydrogen gas first sample = 10 °C.
Temperature in kelvin scale of the first sample = 10 + 273 = 283 K
For the second sample, the temperature is 350 K.
Thus we see the second sample of the hydrogen gas more temperature than the first sample.
We know from the kinetic theory of gases that
The kinetic energy of gas molecules increases with the increase in temperature of the gas. The speed of the movement of gas molecules also increase with the increase in kinetic energy.
So higher the temperature of a gas, more is the kinetic energy and more is the movement speed of the gas molecules.
Thus the hydrogen at 10 °C has slower-moving molecules than the sample at 350 K.