Answer: ME= E total - E thermal
Answer:
ni = 2.04e19
Explanation:
we know that in semiconductor like intrinsic, when electron leave the band, it leave a hole in valence band so we have
n = p = ni
from intrinsic carrier concentration



1.7 = ni * 1.6*10^{-19} * (.35 + .17)
ni = 2.014 *10^{19} m^{-3}
ni = 2.04e19
1. Based on Scenario A, multiple frames will minimize re-transmission overhead and should be preferred in the encapsulation of packets.
2. Based on Scenario B, the encapsulation of packets should be in a single frame because of the high level of network reliability and accuracy.
<u>Justification:</u>
There will not be further need to re-transmit the packets in a highly reliable and accurate network environment, unlike in an environment that is very prone to errors. The reliable and accurate network environment makes a single frame economically better.
Encapsulation involves the process of wrapping code and data together within a class so that data is protected and access to code is restricted.
With encapsulation, each layer:
- provides a service to the layer above it
- communicates with a corresponding receiving node
Thus, in a reliable and accurate network environment, single frames should be used to enhance transmission and minimize re-transmission overhead. This is unlike in an environment that is very prone to errors, where multiple frames should rather be used to minimize re-transmission overhead.
Learn more about encapsulation of packets here: brainly.com/question/22471914
The time of a wave is 65 m/sec. if the wavelength of the wave is 0.8 meters. what is the speed of this wave?
answer- the speed is 52
Answer:
endothermic
Explanation:
An endothermic is any process with an increase in the enthalpy H (or internal energy U) of the system. In such a process, a closed system usually absorbs thermal energy from its surroundings, which is heat transfer into the system.