Answer:

Explanation:
GIVEN
diameter = 15 fm =
m
we use here energy conservation

there will be some initial kinetic energy but after collision kinetic energy will zero

on solving these equations we get kinetic energy initial
J ..............(i)
That is, the alpha particle must be fired with 35.33 MeV of kinetic energy. An alpha particle with charge q = 2 e
and gains kinetic energy K =e∆V ..........(ii)
by accelerating through a potential difference ∆V
Thus the alpha particle will
just reach the
nucleus after being accelerated through a potential difference ∆V
equating (i) and second equation we get
e∆V = 35.33 Me V

Answer:
114.92749 keV
Explanation:
r = Radius of trajectory
m = Mass of electron = 
B = Magnetic field = 0.044 T
q = Charge of electron = 
The centripetal force and the magnetic forces are conserved

Velocity of first electron

Velocity of second electron

Total kinetic energy is given by

Converting to eV


The energy of incident electron is 114.92749 keV
A book falls to the floor.
A car skids to a stop.
A foam ball launches from a spring (Are the right answer, just did this one 4:34 pm Jan/21/19)
Direction of resultant force in circular motion is directed towards the center of the circle. Hence vector B is the direction of the resultant force.
Answer:
<em>216 J</em>
Explanation:
h = 1.8
a = 9.8
m = 12.2
<em>GPE</em> = <em>HAM</em> = 216