1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Andrew [12]
3 years ago
13

A system uses 2380 I of energy to do work as 12,900 j of heat are added to the system. The change in internal energy of the syst

em is
Physics
1 answer:
sergey [27]3 years ago
4 0
The internal energy of the system is characterized by the equation U = Q + W where U is the internal energy, Q is the heat and W is work. You are given 2,380 J of energy to do work as 12,900 J of heat so add up. The internal energy is 15,280J.



You might be interested in
When does a object have the greatest kinetic energy?
Rufina [12.5K]
When Object is at zero height, and there is no potential energy possess by the object then it exerts Greatest Kinetic energy in it's whole Journey

Hope this helps!
8 0
3 years ago
Very far from earth (at R- oo), a spacecraft has run out of fuel and its kinetic energy is zero. If only the gravitational force
Margaret [11]

Answer:

Speed of the spacecraft right before the collision: \displaystyle \sqrt{\frac{2\, G\cdot M_\text{e}}{R\text{e}}}.

Assumption: the earth is exactly spherical with a uniform density.

Explanation:

This question could be solved using the conservation of energy.

The mechanical energy of this spacecraft is the sum of:

  • the kinetic energy of this spacecraft, and
  • the (gravitational) potential energy of this spacecraft.

Let m denote the mass of this spacecraft. At a distance of R from the center of the earth (with mass M_\text{e}), the gravitational potential energy (\mathrm{GPE}) of this spacecraft would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R}.

Initially, R (the denominator of this fraction) is infinitely large. Therefore, the initial value of \mathrm{GPE} will be infinitely close to zero.

On the other hand, the question states that the initial kinetic energy (\rm KE) of this spacecraft is also zero. Therefore, the initial mechanical energy of this spacecraft would be zero.

Right before the collision, the spacecraft would be very close to the surface of the earth. The distance R between the spacecraft and the center of the earth would be approximately equal to R_\text{e}, the radius of the earth.

The \mathrm{GPE} of the spacecraft at that moment would be:

\displaystyle \text{GPE} = -\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}.

Subtract this value from zero to find the loss in the \rm GPE of this spacecraft:

\begin{aligned}\text{GPE change} &= \text{Initial GPE} - \text{Final GPE} \\ &= 0 - \left(-\frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\right) = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \end{aligned}

Assume that gravitational pull is the only force on the spacecraft. The size of the loss in the \rm GPE of this spacecraft would be equal to the size of the gain in its \rm KE.

Therefore, right before collision, the \rm KE of this spacecraft would be:

\begin{aligned}& \text{Initial KE} + \text{KE change} \\ &= \text{Initial KE} + (-\text{GPE change}) \\ &= 0 + \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}} \\ &= \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}\end{aligned}.

On the other hand, let v denote the speed of this spacecraft. The following equation that relates v\! and m to \rm KE:

\displaystyle \text{KE} = \frac{1}{2}\, m \cdot v^2.

Rearrange this equation to find an equation for v:

\displaystyle v = \sqrt{\frac{2\, \text{KE}}{m}}.

It is already found that right before the collision, \displaystyle \text{KE} = \frac{G \cdot M_\text{e}\cdot m}{R_\text{e}}. Make use of this equation to find v at that moment:

\begin{aligned}v &= \sqrt{\frac{2\, \text{KE}}{m}} \\ &= \sqrt{\frac{2\, G\cdot M_\text{e} \cdot m}{R_\text{e}\cdot m}} = \sqrt{\frac{2\, G\cdot M_\text{e}}{R_\text{e}}}\end{aligned}.

6 0
3 years ago
Describe 3 physical properties of this object (color, state of matter, shape, size, hardness, etc)
ivanzaharov [21]

Answer: The color is orange, the state of matter is liquid

Explanation:

6 0
3 years ago
Read 2 more answers
Explain the change of frequency of the wave if the tension of the string is increased​
jek_recluse [69]

Answer:

Increasing the tension on a string increases the speed of a wave, which increases the frequency (for a given length). Pressing the finger at different places changes the length of string, which changes the wavelength of standing wave, affecting the frequency.

Explanation:

8 0
3 years ago
A scene in a movie has a stuntman falling through a floor onto a bed in the room below. The plan is to have the actor fall on hi
IgorC [24]

Answer:

m=17.79Kg

Explanation:

In this process energy must be conserved. On the initial stage, there will be only gravitational potential energy, while on the final stage there will be only elastic potential energy, so they will be equal. We write this as:

U_g=U_e

Which is the same as:

mgh=\frac{k \Delta x^2}{2}

So we can obtain our mass from there, and for our values:

m=\frac{k \Delta x^2}{2gh}=\frac{(65144 N/m)(0.1333m)^2}{2(9.8m/s^2)(3.32m)}=17.79Kg

4 0
3 years ago
Other questions:
  • What other structures is it near hypothalamus?
    10·1 answer
  • Choose all the answers that apply. Confirmation bias ___.
    15·1 answer
  • Which of Earths layers is made up of liquid metal
    12·1 answer
  • which element is used as rat poison and is found in the title of the murder mystery _______ and old lace
    9·2 answers
  • The sun, like all stars, releases energy through nuclear fusion. In this problem, you will find the total number of fusion react
    9·1 answer
  • What mass of a material with density rho is required to make a hollow spherical shell having inner radius r1 and outer radius r2
    7·1 answer
  • When the skater starts 7 mm above the ground, how does the speed of the skater at the bottom of the track compare to the speed o
    11·1 answer
  • What are particles of carbon called?
    15·1 answer
  • Help me on this question
    14·1 answer
  • if a car is moving with a speed of 50km/s then calculate the distance covered by the car in 20 seconds
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!