1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Doss [256]
3 years ago
6

What led kepler to abandon circular orbits and his discovery that planetary orbits are ellipses?

Physics
1 answer:
Nimfa-mama [501]3 years ago
4 0
<span>A deviation between observed and model values that was much larger than the observation uncertainties led Kepler to abandon circular orbits and his discovery that planetary orbits are ellipses</span>
You might be interested in
1. A sprinter races in the 100 meter dash. It takes him 10 second to reach the finish line
poizon [28]

Answer:

v = 10 m/s

Explanation:

Given that,

Distance covered by a sprinter, d = 100 m

Time taken by him to reach the finish line, t = 10 s

We need to find his average velocity. We know that velocity is equal to the distance covered divided by time taken. So,

v = d/t

v=\dfrac{100\ m}{10\ s}\\\\v=10\ m/s

Hence, his average velocity is 10 m/s.

6 0
2 years ago
When sunlight shines on a leaf the leaf looks green why does the leaf look green
KonstantinChe [14]
The correct answer is the third, It reflects the green light waves and absorbs most of the rest.
7 0
2 years ago
Read 2 more answers
A baseball is thrown straight up from a building that is 25 meters tall with an initial velocity v = 10 m/s. How fast is it goin
Yanka [14]

Answer:-24,5m/s

Explanation: what we have here is a UALM with these gravity as acceleration (-9.8 m/s^2). The initial position is 25 m and initial speed is 10m/s.

Speed and gravity are increasing in the opposite direction, speed upwards and gravity downwards, while the position is also upwards, depending on your reference system.

The first thing I need to know is the maximum high it will reach.

Hmax=- S(0)^2/2g=

S= speed.

0= initial

G= gravity

Hm= 100/19,6= 5.1 m

So, the ball will go 5,1 m higher than the initial position, and from there it will fall free.

Then, I need to know how long it takes to fall. For that we use UALM equation:

X(t)= X(0) + S(0)*t + (A*t^2)/2.

X: position

S: speed

A: acceleration

T:time

0: initial

0 = 25m +10*t -(9.8 * t^2)/2

Solving the quadratic equation we get

T= 3,5 sec. ( Negative value for time is impossible)

So now we know that the ball to go up and then fall needs 3,5 sec.

Let's see how long it takes to go up:

30,1=25+10*t-4,9*t^2

0=-5,1+10*t-4,9*t^2

T= 1 sec. So it will take 1 sec to the ball to reach the maximum high and 0=speed and then it'll fall during the resting 2,5 sec

Finally, to know the speed just before it touches the ground, we use the following formula:

A= (St-S0)/t

-9.8m/s^2 = (St- 0m/s)/ 2,5s

-24,5 m/s= St

-24,5 m/s is the speed at 3,5 sec, which is the time just before falling

3 0
3 years ago
A ball is thrown off a cliff at a speed of 10 m/s in a horizontally direction. The ball reaches the ground 1.5 seconds. If the b
Tems11 [23]
I am pretty sure it is d
5 0
2 years ago
The magnetic field in a cyclotron is 1.25 T, and the maximum orbital radius of the circulating protons is 0.40 m. (a) What is th
Darya [45]

Answer:

1.92 x 10⁻¹²J

Explanation:

The magnetic force from the magnetic field gives the circulating protons gives the particle the necessary centripetal acceleration to keep it orbiting round the circular path. And from Newton's second law of motion, the force(F) is equal to the product of the mass(m) of the proton and the centripetal acceleration(a). i.e

F = ma

Where;

a = \frac{v^2}{r}             [v = linear velocity, r = radius of circular path]

=> F = m\frac{v^2}{r}           ------------(i)

We also know that the magnitude of this magnetic force experienced by the moving charge (proton) in a magnetic field is given by;

F = q v B sin θ       ----------(ii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = the angle between the velocity and the magnetic field.

Combining equations (i) and (ii) gives

m\frac{v^2}{r} = q v B sin θ           [θ = 90° since the proton is orbiting at the maximum orbital radius]

=> m\frac{v^2}{r} = q v B sin 90°

=> m\frac{v^2}{r} = q v B

Divide both side by v;

=> m\frac{v}{r} = qB

Make v subject of the formula

v = \frac{qBr}{m}

From the question;

B = 1.25T

m = mass of proton = 1.67 x 10⁻²⁷kg

r = 0.40m

q = charge of a proton = 1.6 x 10⁻¹⁹C

Substitute these values into equation(iii) as follows;

v = \frac{(1.6*10^{-19})(1.25)(0.4)}{(1.67*10^{-27})}

v = 4.79 x 10⁷m/s

Now, the kinetic energy, K, is given by;

K = \frac{1}{2}mv²

m = mass of proton

v = velocity of the proton as calculated above

K = \frac{1}{2}(1.67*10^{-27} * (4.79 * 10^7)^2 )

K = 1.92 x 10⁻¹²J

The kinetic energy is 1.92 x 10⁻¹²J

8 0
3 years ago
Other questions:
  • How is carbonic acid responsible for the formation of some caves? ASAP PLEASE!!!!
    7·1 answer
  • A conductor is formed into a loop that encloses an area of 1.0 m2. The loop is orientedat a 30.0° angle with the xy-plane. A var
    7·1 answer
  • Speed is the rate at which what happens?
    12·1 answer
  • Are the correct? PLEASE HELP ASAP
    10·2 answers
  • Why are galaxies visible
    10·1 answer
  • What is the speed of light across space?
    5·1 answer
  • An ice cream maker has a refrigeration unit which can remove heat at 120 Js'. Liquid ice
    5·1 answer
  • The energy an object has by virtue of its position is kinetic energy.<br> True<br> False
    10·1 answer
  • If the body's temperature is above 105 °F for a prolonged period, heat stroke
    7·1 answer
  • A hollow cast-iron cylinder 4m long, 300mm outer diameter, and thickness of metal 50mm is subjected to a central load on the top
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!