Had you included the picture, we would also know the height. Without that, we can't calculate the volume, and without the volume, we can't calculate the density.
The thickness is 155 nm at t1.
The thickness is 77.3 nm at t2.
The inquiry informs us that the laser light's wavelength is λ=510nm
The plastic rod's refractive index is n=1.30
The transparent coating's refractive index is nr=1.65
Minimum reflection would be required for maximal light transmission into the rod, and it is mathematically described as
2t1=510+10⁻⁹/1.65
t1=510+10⁻⁹/1.65*2
t1=155nm
where m is the interference order, which equals 1.
2t2= {m+1/2} λ/nr
The thickness is t replacing values
t1=155 nm
The highest reflection would occur for minimal light penetration through the rod, and this maximum reflection is mathematically described as
2t2= [m+1/2] λ/nr
t2=77.3 nm
The complete question is- Laser light of wavelength 510 nm is traveling in air and shines at normal incidence onto the flat end of a transparent plastic rod that has n = 1.30. The end of the rod has a thin coating of a transparent material that has refractive index 1.65. What is the minimum (nonzero) thickness of the coating (a) for which there is maximum transmission of the light into the rod; (b) for which transmission into the rod is minimized?
Learn more about reflection here-
brainly.com/question/15487308
#SPJ4
(a) 
The radiation pressure exerted by an electromagnetic wave on a surface that totally absorbs the radiation is given by

where
I is the intensity of the wave
c is the speed of light
In this problem,

and substituting
, we find the radiation pressure

(b) 
Since we know the cross-sectional area of the laser beam:

starting from the radiation pressure found at point (a), we can calculate the force exerted on a tritium atom:

And then, since we know the mass of the atom

we can find the acceleration, by using Newton's second law:

That it's more puashe on the back of the canoe and that effects the back of the canoe to fall back
Helium lithium and calcium