O.99 m long .simple pendulum time period is 2s for second formula then use formula T=2pi.rt(lenght/gravity)
The Kinetic<span> Molecular </span>Theory<span> explains the forces between </span>molecules<span> and the energy that </span>they<span> possess.
</span>
Answer:
weightlessness, condition experienced while in free-fall, in which the effect of gravity is canceled by the inertial (e.g., centrifugal) force resulting from orbital flight. ... Excluding spaceflight, true weightlessness can be experienced only briefly, as in an airplane following a ballistic (i.e., parabolic) path.
Answer:
When have passed 3.9[s], since James threw the ball.
Explanation:
First, we analyze the ball thrown by James and we will find the final height and velocity by the time two seconds have passed.
We'll use the kinematics equations to find these two unknowns.
![y=y_{0} +v_{0} *t+\frac{1}{2} *g*t^{2} \\where:\\y= elevation [m]\\y_{0}=initial height [m]\\v_{0}= initial velocity [m/s] =41.67[m/s]\\t = time passed [s]\\g= gravity [m/s^2]=9.81[m/s^2]\\Now replacing:\\y=0+41.67 *(2)-\frac{1}{2} *(9.81)*(2)^{2} \\\\y=63.72[m]\\](https://tex.z-dn.net/?f=y%3Dy_%7B0%7D%20%2Bv_%7B0%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cy%3D%20elevation%20%5Bm%5D%5C%5Cy_%7B0%7D%3Dinitial%20height%20%5Bm%5D%5C%5Cv_%7B0%7D%3D%20initial%20velocity%20%5Bm%2Fs%5D%20%3D41.67%5Bm%2Fs%5D%5C%5Ct%20%3D%20time%20passed%20%5Bs%5D%5C%5Cg%3D%20gravity%20%5Bm%2Fs%5E2%5D%3D9.81%5Bm%2Fs%5E2%5D%5C%5CNow%20replacing%3A%5C%5Cy%3D0%2B41.67%20%2A%282%29-%5Cfrac%7B1%7D%7B2%7D%20%2A%289.81%29%2A%282%29%5E%7B2%7D%20%5C%5C%5C%5Cy%3D63.72%5Bm%5D%5C%5C)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can find the velocity after 2 seconds.
![v_{f} =v_{o} +g*t\\replacing:\\v_{f} =41.67-(9.81)*(2)\\\\v_{f}=22.05[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%20%3Dv_%7Bo%7D%20%2Bg%2At%5C%5Creplacing%3A%5C%5Cv_%7Bf%7D%20%3D41.67-%289.81%29%2A%282%29%5C%5C%5C%5Cv_%7Bf%7D%3D22.05%5Bm%2Fs%5D)
Note: The sign for the gravity is minus because it is acting against the movement.
Now we can take these values calculated as initial values, taking into account that two seconds have already passed. In this way, we can find the time, through the equations of kinematics.

As we can see the equation is based on Time (t).
Now we can establish with the conditions of the ball launched by David a new equation for y (elevation) in function of t, then we match these equations and find time t
![y=y_{o} +v_{o} *t+\frac{1}{2} *g*t^{2} \\where:\\v_{o} =55.56[m/s] = initial velocity\\y_{o} =0[m]\\now replacing\\63.72 +22.05 *t-(4.905)*t^{2} =0 +55.56 *t-(4.905)*t^{2} \\63.72 +22.05 *t =0 +55.56 *t\\63.72 = 33.51*t\\t=1.9[s]](https://tex.z-dn.net/?f=y%3Dy_%7Bo%7D%20%2Bv_%7Bo%7D%20%2At%2B%5Cfrac%7B1%7D%7B2%7D%20%2Ag%2At%5E%7B2%7D%20%5C%5Cwhere%3A%5C%5Cv_%7Bo%7D%20%3D55.56%5Bm%2Fs%5D%20%3D%20initial%20velocity%5C%5Cy_%7Bo%7D%20%3D0%5Bm%5D%5C%5Cnow%20replacing%5C%5C63.72%20%2B22.05%20%2At-%284.905%29%2At%5E%7B2%7D%20%3D0%20%2B55.56%20%2At-%284.905%29%2At%5E%7B2%7D%20%5C%5C63.72%20%2B22.05%20%2At%20%3D0%20%2B55.56%20%2At%5C%5C63.72%20%3D%2033.51%2At%5C%5Ct%3D1.9%5Bs%5D)
Then the time when both balls are going to be the same height will be when 2 [s] plus 1.9 [s] have passed after David throws the ball.
Time = 2 + 1.9 = 3.9[s]
Lift force exerted by the air on the rotors=143244 N
Explanation:
we use Newtons second law
F- (M+m)g=(M+m)a
F= lift force
m= mass of helicopter= 13000 Kg
M= mass of car= 2000 lb=907.2 kg
a= acceleration= 0.5 m/s²
g= acceleration due to gravity
F- (M+m)g=(M+m)a
F=(M+m)(a+g)
F=(13000+907.2)(0.5+9.8)
F=143244 N