The third equation of free fall can be applied to determine the acceleration. So that Paola's acceleration during the flight is 39.80 m/
.
Acceleration is a quantity that has a direct relationship with velocity and also inversely proportional to the time taken. It is a vector quantity.
To determine Paola's acceleration, the third equation of free fall is appropriate.
i.e
=
± 2as
where: V is the final velocity, U is the initial velocity, a is the acceleration, and s is the distance covered.
From the given question, s = 20.1 cm (0.201 m), U = 4.0 m/s, V = 0.
So that since Poala flies against gravity, then we have:
=
- 2as
0 =
- 2(a x 0.201)
= 16 - 0.402a
0.402a = 16
a = 
= 39.801
a = 39.80 m/
Therefore Paola's acceleration is 39.80 m/
.
Visit: brainly.com/question/17493533
Violet light is at the end of the visible light section of the electromagnetic spectrum. Ultraviolet rays are directly next to violet rays on the EM Spectrum.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
The moment of the resultant of these two forces with respect to O 376 lb-ft CCW which is <span>about moment center point O.</span>
Answer:
Acceleration, 
Explanation:
Given that,
Mass of the planet Krypton, 
Radius of the planet Krypton, 
Value of gravitational constant, 
To find,
The acceleration of an object in free fall near the surface of Krypton.
Solution,
The relation for the acceleration of the object is given by the below formula as :



So, the value of acceleration of an object in free fall near the surface of Krypton is 