Answer:
12.17 m/s²
Explanation:
The formula of period of a simple pendulum is given as,
T = 2π√(L/g)........................ Equation 1
Where T = period of the simple pendulum, L = length of the simple pendulum, g = acceleration due to gravity of the planet. π = pie
making g the subject of the equation,
g = 4π²L/T²................... Equation 2
Given: T = 1.8 s, l = 1.00 m
Constant: π = 3.14
Substitute into equation 2
g = (4×3.14²×1)/1.8²
g = 12.17 m/s²
Hence the acceleration due to gravity of the planet = 12.17 m/s²
<span>Star a is more distant and is approximately 5 times as far away as star b
Parallax is the change in angle that one must do in order to observe the same object from different locations. The further away an object is, the smaller the parallax is. As the angles approach zero, the trig functions tend to be fairly linear. And 0.1 arc seconds and 0.02 arc seconds are close enough to zero for this to hold true.
Since the parallax for star a is smaller than the parallax for star b, it is the more distant star. And since 0.1 divided by 0.02 = 5, it is approximately 5 times further away than star b.</span>
Density is the ratio of a substance's mass to its volume. On the other hand, according to Archimedes' principle, the volume of water displaced is equal to the volume of the object placed on the water. Thus, the density of the metal is equal to 8.39 mL. So, the density would be
Density = 32.5 g/8.39 mL = 3.87 g/mL
Answer:
10.16 degrees
Explanation:
Apply Snells Law for both wavelenghts
\(n_{1}sin\theta_{1} = n_{2}sin\theta_{2}\)
For red
(1.620)(sin 25.5) = (1)(sin r)
For red, the angle is 35.45degrees
For violet
(1.660)(sin 25.5) = (1)(sin v)
For violet, the angle is 45.6 degrees
The difference is 45.6- 35.45 = 10.16 degrees
Answer:
power=work done÷time taken
2×5=10
10÷10=1
ans 1J per second