Answer:
The current of the solenoid is 0.0129 A.
Explanation:
The movement of the electron within the solenoid in a circle is produced by equaling the magnetic force and the centripetal force, as follows:


Where:
I: is the current
m: is the electron's mass = 9.1x10⁺³¹ kg
v: is the electron's speed = 3.0x10⁵ m/s
μ₀: is the permeability magnetic = 4πx10⁻⁷ T.m/A
n: is the number of turns per unit length = 35/cm
r: is the radius of the circle = 3.0 cm
e: is the electron's charge = 1.6x10⁻¹⁹ C
Therefore, the current of the solenoid is 0.0129 A.
I hope it helps you!
High energy waves have Gamma rays
Answer:
Explanation:
i )
When it is disconnected with the battery , the charge stored in it becomes fixed . When the plate distance becomes half , its capacitance becomes twice from C to 2C . Let charge stored in it at the time of disconnection from battery be Q . Let plate separation reduces from d to d / 2
So charged stored in it will remain unchanged .
ii )
Potential difference = charge / capacitance
in the first case potential difference = Q / C
in the second case potential difference = Q / 2C
So potential difference becomes half .
iii ) electric field = potential diff / plate separation
in the first case electric field = Q / (d x C )
in the second case electric field = 2 Q / (d x 2C)
= Q / (d x C )
So electric field remains unchanged .
iv)
energy stored in first case = Q² / 2C
In the second case energy stored = Q² / 2x2C
so energy stored becomes half .
Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second
Answer:

Explanation:
Given that,
The current flowing in the circuit, I = 3 A
The power of the battery, P = 25 W
We need to find the resistance of the battery. We know that the power of the battery is given by the formula as follows :

Put all the values to find R.

So, the resistance is equal to
.