Answer: I'm going to guess and say it is h2 or o2 I am not sure.
Explanation:
Answer:
(1) -12 Kcal/mol
Explanation:
Our answer options for this question are:
(1) -12 Kcal/mol
(2) -13 Kcal/mol
(3) -15 Kcal/mol
(4) -16 Kcal/mol
With this in mind, we can start with the chemical reaction (Figure 1). In this reaction, <u>two bonds are broken</u>, a C-H and a Br-Br. Additionally, a C-Br and a H-Br are <u>formed</u>.
If we want to calculate the enthalpy value, we can use the equation:
<u>ΔH=ΔHbonds broken-ΔHbonds formed</u>
If we use the energy values reported, its possible to calculate the energy for each set of bonds:
<u>ΔHbonds broken</u>
<u />
C-H = 94.5 Kcal/mol
Br-Br = 51.5 Kcal/mol
Therefore:
105 Kcal/mol + 53.5 Kcal/mol = 146 Kcal/mol
<u>ΔHbonds formed</u>
C-Br = 70.5 Kcal/mol
H-Br = 87.5 Kcal/mol
Therefore:
70.5 Kcal/mol + 87.5 Kcal/mol = 158 Kcal/mol
<u>ΔH of reaction</u>
<u />
ΔH=ΔHbonds broken-ΔHbonds formed=(146-158) Kcal/mol = -12 Kcal/mol
I hope it helps!
<u />
<u>Answer:</u> The correct option is
<u>Explanation:</u>
A catalyst is defined as the chemical species that increases the reaction rate but does not participate in it and is left behind after the completion.
A homogeneous catalyst is one that is present in the same phase as the reactants and products.
A heterogeneous catalyst is one that is present in different phase as that of reactants and products.
For the given chemical reaction:

As all the reactants and products are in gaseous state so, the homogeneous catalyst must also be in the gaseous state only.
Hence, the correct option is 
You need .556M HCL to neutralize that
Answer:
because hard water is salty