Answer:
The deviation of a mirror is equal to twice the angle of incidence.The total angle between the straight-line path and the reflected ray is twice the angle of incidence. This is called the deviation of the light and measures the angle at which the light has strayed from its initial straight-line path.
HOPE IT HELPS :)
PLEASE MARK IT THE BRAINLIEST!
The direction of the force experienced by the positive charge is upward.
We can use the right-hand rule to understand the direction of the Lorentz force acting on the charge: let's put the thumb in the same direction of the current in the wire (eastward), while the other fingers "wrap themselves" around the wire. These other fingers give the direction of the Lorentz force in every point of the space around the wire. Since the charge is located north of the wire, in that point the fingers are directed upward, so the positive charge experiences a force directed upward.
(if it was a negative charge, we should have taken the opposite direction)
<h3><u>Answer</u>;</h3>
-The total momentum of an isolated system is constant.
-The total momentum of any number of particles is equal to the vector sum of the momenta of the individual particles.
-The vector sum of forces acting on a particle equals the rate of change of momentum of the particle with respect to time.
<h3><u>Explanation</u>;</h3>
- Momentum is a vector quantity, and therefore we need to use vector addition when summing together the momenta of the multiple bodies which make up a system.
- The vector sum of forces acting on a particle is equivalent to the rate of change of momentum of the particle with respect to time. This is according to the Newton's second Law of motion. In mathematical terms, ֿF = d ֿp/dt, that is F= ma.
- According to the Law of conservation of Momentum, or a collision occurring between object 1 and object 2 in an isolated system, the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.
Answer:
1. A glass of water at 80°C because the more heat it will recieve, the more temperature increases. Heat is a sort of energy so the more it is heated, the more energy the water will recieve. So in comparison to 20°C, 80°C has more energy in it because it has a higher temperature.
2. An aluminium can at 30°C because the more heat it will recieve, the more temperature increases. Heat is a sort of energy so the more it is heated, the more energy the aluminium will recieve. So in comparison to 20°C, 30°C has more energy in it because it has a higher temperature.
Brainliest pweaseee if it is the correct answer! <3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~