Answer: Force applied by trampoline = 778.5 N
<em>Note: The question is incomplete.</em>
<em>The complete question is : What force does a trampoline have to apply to a 45.0 kg gymnast to accelerate her straight up at 7.50 m/s^2? note that the answer is independent of the velocity of the gymnast. She can be moving either up or down or be stationary.
</em>
Explanation:
The total required the trampoline by the trampoline = net force accelerating the gymnast upwards + force of gravity on her.
= (m * a) + (m * g)
= m ( a + g)
= 45 kg ( 7.50 * 9.80) m/s²
Force applied by trampoline = 778.5 N
Answer:
Explanation:
Let c be the circumference and r be the radius
c = 2πr , r = c / 2π , area A = π r² = π (c/2π )² = (1/4π) x c²
flux (ψ) = BA = 1 X 1/4π X c²
dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt
at t = 8 s
c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s
e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.
It is the mitochondria of a cell that stores energy for a quick release. <span>Mitochondria break down glucose to release the energy for cells to use. Hope this answers the question. Have a nice day. Feel free to ask more questions.</span>
Answer:
x ’= 368.61 m, y ’= 258.11 m
Explanation:
To solve this problem we must find the projections of the point on the new vectors of the rotated system θ = 35º
x’= R cos 35
y’= R sin 35
The modulus vector can be found using the Pythagorean theorem
R² = x² + y²
R = 450 m
we calculate
x ’= 450 cos 35
x ’= 368.61 m
y ’= 450 sin 35
y ’= 258.11 m