Answer: 
Explanation:
Given
Power 
Distance from the light source 
Intensity is given by

Inserting values

Answer:
Explanation:
Young's modulus of elasticity Y = stress / strain
stress = force / cross sectional area
= weight of 15 kg / π r²
= 15 x 9.8 / 3.14 x ( .025 x 10⁻² )²
stress = 74.9 x 10⁷ N / m²
strain = Δ L / L , Δ L is change in length and L is original length
Putting the values
strain = .0168 / 2.7 =.006222
Young's modulus of elasticity Y = 74.9 x 10⁷ / .006222
= 120.88 x 10⁹ N / m² .
Answer: 16.22 m/s^2
Explanation: g= GM/r^2 G= (6.67x 10^-11) M= 1.66(6x 10^24) r=(6400x 10^3) so
((6.67x10^-11)(1.66x 6x 10^24))/ (6400x10^3)^2 = 16.22 m/s^2
Answer:
Explanation:
Discussion
The top picture should be obvious. The rope is tied at one end. The person holding it provides energy in the form of vibrations moving up and down the way the diagram is shown. The wave can also be created by the rope moving sideways.
The bottom picture is much harder. T energy is provided by the forefinger. It has to move. If you just stick your finger in the water, all that will happen is that you will move some water (very little in the scheme of things.
So the energy is provided by a moving forefinger.
The main function of the cardiovascular system is therefore to maintain blood flow to all parts of the body, to allow it to survive. Veins deliver used blood from the body back to the heart.