Answer:
velocity in which the space described varies from instant to instant, either increasing or decreasing in the former case called accelerated velocity
Explanation:
I hope this helps :)...
Answer:
Work is done by the heart on the blood during this time is 0.04 J
Explanation:
Given :
Mass of blood pumped, m = 80 g = 0.08 kg
Initial speed of the blood, u = 0 m/s
Final speed of the blood, v = 1 m/s
Initial kinetic energy of blood is determine by the relation:

Final kinetic energy of blood is determine by the relation:

Applying work-energy theorem,
Work done = Change in kinetic energy
W = E₂ - E₁

Substitute the suitable values in the above equation.

W = 0.04 J
Answer:
0.04 mm Hg / mL / min .
Explanation:
Arterial pressure = 120 mm Hg
right atrial pressure = 0 mm Hg
Drop in pressure due to peripheral resistance = 120 mm Hg
volume of cardiac output per minute = 3000 mL/min
total peripheral resistance
= 120 / 3000 mm Hg / mL / min
= 0.04 mm Hg / mL / min .
Answer:
-20,000N
Explanation:
Force (N) = mass (kg) x acceleration (m/s²)
So,
Force = 2000 x -10
= -20,000N (Newtons)
Answer:
C
Explanation:
First find the electrical wattage
W = I^2 * R
R = 12 ohms
I = 2 amps
Wattage = 2^2 * 12
Wattage = 4* 12
Wattage = 48 watts.
Now you need to use the power formula
Work = Power * Time
Work = ?
Power = 48 watts
Time = 3 minutes = 3 * 60 = 180 seconds.
Work = 48 * 180
Work = 8640 J
That's C