To solve the problem it is necessary to apply the concepts related to Byle's Law and Avogadro's Law.
The ideal gas equation would help us find the final solution to the problem, defined by

Where,
T= Temperature of the gas
R = Universal as constant
n = number of moles
V = Volume
P = Pressure
For our case we have that the mass of Zn is 2.2g in moles would be
[/tex]

We know that 1 mole of hydrogen gas is proceed by 1 mole of zinc and the result is
, then Hydrogen can produce the same quantity,

Applying the previous equation we have that



Therefore the volume of hydrogen gas is collected is 0.829L
Answer:
my method is guessing it works 50% of the time :)
Explanation:
Answer:
who done work in less time will have more power
Explanation:
Answer:
4.14°
Explanation:
given:
r = 1.2 km
v = 105 km/h
1) <em>convert your given </em>
a) r = 1.2 km to m = 1200m
b) v = 105 km/h to m/s = 29.2 m/s
2) <em>plug into your ideal banking angle equation</em>
(
) =
= 4.14°
Radio waves in a vacuum travel at the speed of light because they are a type of electromagnetic radiation like a light has been measured as traveling at 3×10^8 m/s in a vacuum.
Charged particles that are accelerating, like time-varying electric currents, are what produce radio waves. Radio and television signals are transmitted using radio waves, and microwaves used in radar and microwave ovens are also radio waves. Radio waves are emitted by a lot of celestial bodies, including pulsars. High RF exposure levels have the potential to heat biological tissue and raise body temperature. The body's inability to handle or remove the extra heat that could be generated by high RF exposure in humans could result in tissue damage.
To learn more about radio waves please visit -
brainly.com/question/13989450
#SPJ1