Answer:you riding your bike at 12m/s
Explanation: this is because momentum P = mass x velocity. With a bigger mass and a velocity of about 12m/s, you really have a great momentum.
Answer: it can be considered a genetic mutation with a history of a Golden Retriever in their blood but it is very rare. and there our some black retrievers you can buy too. i hope i helped
Explanation:
Answer:
0.25m²
Explanation:
We know that the summation of forces in the vertical direction is zero
So
PA-mg=0
A=mg/p
So
Substituting
A= 75* 9.8/3*10^-3
=0.25m² which is the total shoe area
Answer:
The value is 
Explanation:
From the question we are told that
The initial speed is 
Generally the total energy possessed by the space probe when on earth is mathematically represented as

Here
is the kinetic energy of the space probe due to its initial speed which is mathematically represented as
=>
=> 
And
is the kinetic energy that the space probe requires to escape the Earth's gravitational pull , this is mathematically represented as

Here
is the escape velocity from earth which has a value 
=> 
=> 
Generally given that at a position that is very far from the earth that the is Zero, the kinetic energy at that position is mathematically represented as

Generally from the law energy conservation we have that
So

=> 
=> 
=> 