Answer:
a)
, b)
, c) 
Explanation:
A turbine is a device which works usually in steady state and assumption of being adiabatic means no heat interactions between steam through turbine and surroudings and produce mechanical work from fluid energy. Changes in gravitational energy can be neglected. This system can be modelled after the First Law of Thermodynamics:

a) Change in kinetic energy

![\Delta \dot K = \frac{1}{2} \cdot \left(12.6\,\frac{kg}{s} \right) \cdot \left[\left(80\,\frac{m}{s} \right)^{2}-\left(50\,\frac{m}{s} \right)^{2}\right]](https://tex.z-dn.net/?f=%5CDelta%20%5Cdot%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20%5Cleft%2812.6%5C%2C%5Cfrac%7Bkg%7D%7Bs%7D%20%5Cright%29%20%5Ccdot%20%5Cleft%5B%5Cleft%2880%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D-%5Cleft%2850%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%29%5E%7B2%7D%5Cright%5D)


b) Power output



c) Turbine inlet area
Turbine inlet area can be found by using the following expressions:






Answer:
Power, P = 722.96 watts
Explanation:
It is given that,
Voltage, V = 120 V
Length of nichrome wire, l = 8.9 m
Diameter of wire, d = 0.86 mm
Radius of wire, r = 0.43 mm = 0.00043 m
Resistivity of wire, 
We need to find the power drawn by this heater. Power is given by :

And, 


P = 722.96 watts
So, the power drawn by this heater element is 722.96 watts. Hence, this is the required solution.
Answer: Asking questions
Explanation:
Scientists always start with their question before
Observing anything
The answer would be to research the need. This should have been done before the project began.
Answer:
It allows you to walk faster.
Explanation:
It is the same force that allows you to accelerate forward when you run. Your planted foot can grip the ground and push backward, which causes the ground to push forward on your foot. We call this grip type of friction, where the surfaces are prevented from slipping across each other, a static frictional force.