Answer:
B
Explanation:
That's the answer. Hope it helped!
Answer:
the force exerted by the seat on the pilot is 10766.7 N
Explanation:
The computation of the force exerted by the seat on the pilot is as follows:

Hence, the force exerted by the seat on the pilot is 10766.7 N
Answer:
If an object is moving with a constant velocity, then by definition it has zero acceleration. So there is no net force acting on the object. The total work done on the object is thus 0 (that's not to say that there isn't work done by individual forces on the object, but the sum is 0 ).
Explanation:
In the middle, when the object was changing position at a constant velocity, the acceleration was 0. This is because the object is no longer changing its velocity and is moving at a constant rate.
Answer: 33 mm
Explanation:
Given
Diameter of the tank, d = 9 m, so that, radius = d/2 = 9/2 = 4.5 m
Internal pressure of gas, P(i) = 1.5 MPa
Yield strength of steel, P(y) = 340 MPa
Factor of safety = 0.3
Allowable stress = 340 * 0.3 = 102 MPa
σ = pr / 2t, where
σ = allowable stress
p = internal pressure
r = radius of the tank
t = minimum wall thickness
t = pr / 2σ
t = 1.5*10^6 * 4.5 / 2 * 102*10^6
t = 0.033 m
t = 33 mm
The minimum thickness of the wall required is therefore, 33 mm
Answer:
The speed of the large cart after collision is 0.301 m/s.
Explanation:
Given that,
Mass of the cart, 
Initial speed of the cart, 
Mass of the larger cart, 
Initial speed of the larger cart, 
After the collision,
Final speed of the smaller cart,
(as its recolis)
To find,
The speed of the large cart after collision.
Solution,
Let
is the speed of the large cart after collision. It can be calculated using conservation of momentum as :





So, the speed of the large cart after collision is 0.301 m/s.