Explanation:

Endothermic reactions are chemical reactions in which the reactants absorb heat energy from the surroundings to form products. These reactions lower the temperature of their surrounding area, thereby creating a cooling effect. Physical processes can be endothermic as well – Ice cubes absorb heat energy from their surroundings and melt to form liquid water (no chemical bonds are broken or formed).
When a chemical bond is broken, it is usually accompanied by a release of energy. Similarly, the formation of chemical bonds requires an input of energy. The energy supplied/released can be of various forms (such as heat, light, and electricity). Endothermic reactions generally involve the formation of chemical bonds through the absorption of heat from the surroundings. On the other hand, exothermic reactions involve the release of heat energy generated from bond-breakage.
Endothermic Reaction Examples
Ammonium nitrate (NH4NO3), an important component in instant cold packs, dissociates into the ammonium cation (NH4+) and the nitrate anion (NO3–) when dissolved in water
Answer:
air that moves from high pressure to low pressure
The enthalpy of the solution is <u>positive </u>and the entropy is <u>positive</u>.
Potassium trioxonitrate (V) KNO₃(s) is a strong oxidizing solid substance that when dissolved in water changes to aqueous solution.
In its aqueous solution state, the randomness of molecules increases as a result of that the entropy will also increase leading to the positive state of the entropy.
Similarly, provided that the solution becomes quite cold to the touch, the enthalpy is also in it positive state.
Therefore, we can conclude that the enthalpy of the solution is <u>positive </u>and the entropy is <u>positive</u>.
Learn more about Potassium trioxonitrate (V) KNO₃(s) here:
brainly.com/question/25303112
Answer:
C
Explanation:
A solid becoming liquid, like molten iron