Answer : 135 grams of sodium has 5.869 moles.
Solution : Given,
Mass of sodium = 135 grams
Molar mass of sodium = 23 g/mole
Formula used :

Now put all the given values in this formula, we get

Therefore, the moles of sodium present in 135 grams of sodium is, 5.869 moles.
Answer is: volume of H₂SO₄ is 42.1 mL.<span>
Chemical reaction: H</span>₂SO₄ + 2NaOH → Na₂SO₄ + 2H₂O.<span>
c(H</span>₂SO₄) = 0,4567 M = 0,4567 mol/L.<span>
V(NaOH) = 30 mL </span>÷ 1000 mL/L <span>= 0,03 L.
c(NaOH) = 0,321 M = 0,321 mol/L.
n(NaOH) = c(NaOH) · V(NaOH).
n(NaOH) = 0,321 mol/L · 0,030 L.
n(NaOH) = 0,00963 mol.
From chemical reaction: n(H</span>₂SO₄) : n(NaOH) = 1 : 2.<span>
n(H</span>₂SO₄) = 0,01926 mol.<span>
V(H</span>₂SO₄) = n(H₂SO₄) ÷ c(H₂SO₄).<span>
V(H</span>₂SO₄) = 0,01926 mol ÷ 0,4567 mol/L.<span>
V(H</span>₂SO₄<span>) = 0,0421 L = 42,1 mL.</span>
When an atom donates electrons and other gains electrons, they form ions and the bond is called the ionic bond. When the atoms share electrons between them, they form a molecule, and the bond is called the covalent bond.
The atoms can share one, two or three pairs of electrons in the same bond. If one pair is shared it's called a single bond or a covalent simple; if two pairs are shared it's called a double bond or a covalent double, and if three pairs are shared it's called a triple bond or a covalent triple.
If this helps, please mark me as brainly, if not thats ok. im just here to help you get good grades. :D
Answer: Though a hydrogen atom has only one electron, it contains a large number of shells, so when this single electron jumps from one shell to another, a photon is emitted, and the energy difference of the shells causes different wavelengths to be released... hence, mono-electronic hydrogen has many spectral lines.
Explanation: sry its late