1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
3 years ago
15

Consider a flat plate that is 25 mm long, 30 mm wide, and 1 mm thick and a 50 mm long cylinder with the same volume as the plate

. Compare the heat transfer of the plate in parallel air flow to the heat transfer of the cylinder in cross flow under the same conditions. Both the plate and cylinder have a surface temperature of 80°C. The air is at 25°C with a velocity of 3 m/s. Note: Use the Churchill and Bernstein correlation to determine the Nusselt number for the cylinder case.

Engineering
1 answer:
Blizzard [7]3 years ago
4 0

Answer:

Average heat transfer =42.448w/m^2k

Nud = 13.45978

Explanation:

See attachment for step by step guide

You might be interested in
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
GrogVix [38]

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

a) 0.01 μF

b) 0.58 μF

c) 0.060 μF

d) 0.8 μF

Answer:

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

Explanation:

Please refer to the attached Figure 12-1 where three capacitors are connected in series.

We are asked to find out the equivalent capacitance of this circuit.

Recall that the equivalent capacitance in series is given by

$ \frac{1}{C_{eq}} =  \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} $

Where C₁, C₂, and C₃ are the individual capacitance connected in series.

C₁ = 0.1 μF

C₂ = 0.22 μF

C₃ = 0.47 μF

So the equivalent capacitance is

$ \frac{1}{C_{eq}} =  \frac{1}{0.1} + \frac{1}{0.22} + \frac{1}{0.47} $

$ \frac{1}{C_{eq}} =  \frac{8620}{517}  $

$ C_{eq} =  \frac{517}{8620}  $

$ C_{eq} =  0.0599  $

Rounding off yields

$ C_{eq} =  0.060 \: \mu F $

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

5 0
3 years ago
What is considered the greatest engineering achievement of the 20th century?
kvasek [131]

Answer:

There were a lot of great engineering achievements presented in the 20th century. To name some, we have the electricity, airplane, radio and television, water supply and distribution, computers, television, X-ray imaging, nuclear technologies, and of course the Internet.  

6 0
2 years ago
Pedro holds a heavy science book over his head for 10 minutes. Petro is doing work during that time. True or False
algol [13]

Answer:

True because he is working his arms to lift and hold the weight

Explanation:

4 0
3 years ago
What should be your strongest tool be for gulding your ethical decisions making process
valkas [14]

Answer:

Recognize that there is a moral dilemma.

Determine the actor. ...

Gather the relevant facts. ...

Test for right versus wrong issues. ...

Test for right versus right paradigms. ...

Apply the resolution principles. ...

Investigate the trilemma options. ...

Make the decision.

7 0
2 years ago
g A steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. Determine the longitudinal and hoop stress
zvonat [6]

Answer:

a) \mathbf{\sigma _ 1 = 4800 psi}

     \mathbf{ \sigma _2 = 0}

b)\mathbf{\sigma _ 1 = 6000 psi}

  \mathbf{ \sigma _2 = 3000 psi}

Explanation:

Given that:

diameter d = 12 in

thickness t = 0.25 in

the radius = d/2 = 12 / 2 = 6 in

r/t = 6/0.25 = 24

24 > 10

Using the  thin wall cylinder formula;

The valve A is opened and the flowing water has a pressure P of 200 psi.

So;

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = 0

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{200(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 4800 psi}

b)The valve A is closed and the water pressure P is 250 psi.

where P = 250 psi

\sigma_{hoop} = \sigma _ 1 = \frac{Pd}{2t}

\sigma_{long} = \sigma _2 = \frac{Pd}{4t}

\sigma _ 1 = \frac{Pd}{2t} \\ \\ \sigma _ 1 = \frac{250*(12)}{2(0.25)}

\mathbf{\sigma _ 1 = 6000 psi}

\sigma _2 = \frac{Pd}{4t} \\ \\  \sigma _2 = \frac{250(12)}{4(0.25)}

\mathbf{ \sigma _2 = 3000 psi}

The free flow body diagram showing the state of stress on a volume element located on the wall at point B is attached in the diagram below

8 0
3 years ago
Other questions:
  • Consider two electrochemical reaqctions. Reaction A results in the transfer of 2 mol of electrons per mole of reactant and gener
    14·2 answers
  • Block A has a weight of 8 lb. and block B has a weight of 6 lb. They rest on a surface for which the coefficient of kinetic fric
    8·1 answer
  • In order to break even, your minimum selling price must be __________ your variable costs.
    10·1 answer
  • A hurdler is 0.535 m from a hurdle when he jumps at 6.82 m/s at a 6.79 degree angle. What is his height when he clears the hurdl
    13·1 answer
  • What are the mechanical properties of a geotextile that are of most importance when using it as a separator in an unpaved road s
    12·1 answer
  • When could you use the engineering design process in your own life?
    9·1 answer
  • Air is compressed steadily from 100kPa and 20oC to 1MPa by an adiabatic compressor. If the mass flow rate of the air is 1kg/s an
    12·1 answer
  • A 1/20 scale model of a wing is used to determine forces on the actual airplane. the 1/20 scale refers to the:_____
    10·2 answers
  • Using the tables for water, determine the specified property data at the indicated states. In each case, locate the state on ske
    10·1 answer
  • The ______ number of a flow is defined as the ratio of the speed of flow to the speed of sound in the flowing fluid.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!