Answer:
Some of the benefits are tangible for they are visible in the design and production process, while the other benefits are intangible which may not be visible directly but result in improvement in the quality of product, better control over designing and production process, reduction of stress on the designers etc.
Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
90% of traffic crashes are due to driver error.
True
Answer:
The theoretical maximum specific gravity at 6.5% binder content is 2.44.
Explanation:
Given the specific gravity at 5.0 % binder content 2.495
Therefore
95 % mix + 5 % binder gives S.G. = 2.495
Where the binder is S.G. = 1, Therefore
Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495
(95 +5)/(Vx +5) = 2.495
2.495 × (Vx + 5) = 100
Vx =35.08 to 95
Or density of mix = Mx/Vx = 95/35.08 = 2.7081
Therefore when we have 6.5 % binder content, we get
Per 100 mass unit
93.5 Mass unit of Mx has a volume of
Mass/Density = 93.5/2.7081 = 34.526 volume units
Therefore we have
At 6.5 % binder content.
(100 mass unit)/(34.526 + 6.5) = 2.44
The theoretical maximum specific gravity at 6.5% binder content = 2.44.