1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
5

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

Engineering
1 answer:
GrogVix [38]3 years ago
5 0

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

a) 0.01 μF

b) 0.58 μF

c) 0.060 μF

d) 0.8 μF

Answer:

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

Explanation:

Please refer to the attached Figure 12-1 where three capacitors are connected in series.

We are asked to find out the equivalent capacitance of this circuit.

Recall that the equivalent capacitance in series is given by

$ \frac{1}{C_{eq}} =  \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} $

Where C₁, C₂, and C₃ are the individual capacitance connected in series.

C₁ = 0.1 μF

C₂ = 0.22 μF

C₃ = 0.47 μF

So the equivalent capacitance is

$ \frac{1}{C_{eq}} =  \frac{1}{0.1} + \frac{1}{0.22} + \frac{1}{0.47} $

$ \frac{1}{C_{eq}} =  \frac{8620}{517}  $

$ C_{eq} =  \frac{517}{8620}  $

$ C_{eq} =  0.0599  $

Rounding off yields

$ C_{eq} =  0.060 \: \mu F $

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

You might be interested in
Write an application that solicits and inputs three integers from the user and then displays the sum, average, product, smallest
Ganezh [65]

Answer:

3423=6^H

Explanation:

6 0
3 years ago
A pipeline (NPS = 14 in; schedule = 80) has a length of 200 m. Water (15℃) is flowing at 0.16 m3/s. What is the pipe head loss f
dangina [55]

Answer:

Head loss is 1.64

Explanation:

Given data:

Length (L) = 200 m

Discharge (Q) = 0.16 m3/s

According to table of nominal pipe size , for schedule 80 , NPS 14,  pipe has diameter (D)= 12.5 in or 31.8 cm 0.318 m

We know, head\ loss  = \frac{f L V^2}{( 2 g D)}

where, f = Darcy friction factor

V = flow velocity

g = acceleration due to gravity

We know, flow rate Q = A x V

solving for V

V = \frac{Q}{A}

    = \frac{0.16}{\frac{\pi}{4} (0.318)^2} = 2.015 m/s

obtained Darcy friction factor  

calculate Reynold number (Re) ,

Re = \frac{\rho V D}{\mu}

where,\rho = density of water

\mu = Dynamic viscosity of water at 15 degree  C = 0.001 Ns/m2

so reynold number is

Re = \frac{1000\times 2.015\times 0.318}{0.001}

            = 6.4 x 10^5

For Schedule 80 PVC pipes , roughness (e) is  0.0015 mm

Relative roughness (e/D) = 0.0015 / 318 = 0.00005

from Moody diagram, for Re = 640000 and e/D = 0.00005 , Darcy friction factor , f = 0.0126

Therefore head loss is

HL = \frac{0.0126 (200)(2.015)^2}{( 2 \times 9.81 \times 0.318)}

HL = 1.64 m

7 0
3 years ago
At many intersections, under certain circumstances, a right turn may be made while the traffic light is red. Before turning righ
ANTONII [103]

Answer:

The answer is A

Explanation:

4 0
3 years ago
A stream leaving a sewage pond (containing 80 mg/L of sewage) moves as a plug with a velocity of 40 m/hr. A concentration of 50
Leno4ka [110]

Answer:Decay rate constant,k  = 0.00376/hr

Explanation:

IsT Order  Rate of reaction is given as

In At/ Ao = -Kt

where [A]t is the final concentration at time  t  and  [A]o  is the inital concentration at time 0, and  k  is the first-order rate constant.

Initial concentration = 80 mg/L

Final concentration = 50 mg/L

Velocity = 40 m/hr

Distance= 5000 m

Time taken = Distance / Time

              5000m / 40m/hr = 125 hr

In At/ Ao = -Kt

In 50/80 = -Kt

-0.47 = -kt

- K= -0.47 / 125

k = 0.00376

Decay rate constant,k  = 0.00376/hr

8 0
3 years ago
A load of 1 kg is applied to the tip of a cantilever beam with a width b = 2.5 cm, a thickness h = 1 mm, length L = 20 cm, modul
garik1379 [7]

Answer:

20 g/cm3 divide by 6 is 20

4 0
3 years ago
Read 2 more answers
Other questions:
  • An 1800-W toaster, a 1400-W electric frying pan, and a 75-W lamp are plugged into the same outlet in a 15-A, 120-V circuit. The
    12·1 answer
  • Consider a thermal energy reservoir at 1500 K that can supply heat at a rate of 150,000 kJ/h. Determine the exergy of this suppl
    15·1 answer
  • Two mass streams of the same ideal gas are mixed in a steady-flow chamber while receiving energy by heat transfer from the surro
    11·1 answer
  • A 14 inch diameter pipe is decreased in diameter by 2 inches through a contraction. The pressure entering the contraction is 28
    10·1 answer
  • A three-point bending test is performed on a glass specimen having a rectangular cross section of height d = 5.4 mm (0.21 in.) a
    6·1 answer
  • Please answwr the above question screenshot.​
    15·1 answer
  • You may have to_______
    14·1 answer
  • Which process made making copies of technical drawings easier?
    8·1 answer
  • 6.48 programming project 1: encode/decode tic -tac-toe
    5·1 answer
  • X cotx expansion using maclaurins theorem.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!