1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Y_Kistochka [10]
3 years ago
5

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

Engineering
1 answer:
GrogVix [38]3 years ago
5 0

The question is incomplete! Complete question along with answer and step by step explanation is provided below.

Question:

Calculate the equivalent capacitance of the three series capacitors in Figure 12-1

a) 0.01 μF

b) 0.58 μF

c) 0.060 μF

d) 0.8 μF

Answer:

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

Explanation:

Please refer to the attached Figure 12-1 where three capacitors are connected in series.

We are asked to find out the equivalent capacitance of this circuit.

Recall that the equivalent capacitance in series is given by

$ \frac{1}{C_{eq}} =  \frac{1}{C_{1}} + \frac{1}{C_{2}} + \frac{1}{C_{3}} $

Where C₁, C₂, and C₃ are the individual capacitance connected in series.

C₁ = 0.1 μF

C₂ = 0.22 μF

C₃ = 0.47 μF

So the equivalent capacitance is

$ \frac{1}{C_{eq}} =  \frac{1}{0.1} + \frac{1}{0.22} + \frac{1}{0.47} $

$ \frac{1}{C_{eq}} =  \frac{8620}{517}  $

$ C_{eq} =  \frac{517}{8620}  $

$ C_{eq} =  0.0599  $

Rounding off yields

$ C_{eq} =  0.060 \: \mu F $

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF

Therefore, the correct option is (c)

You might be interested in
What is the activation energy (Q) for a vacancy formation if 10 moles of a metal have 2.3 X 10^13 vacancies at 425°C?
Yakvenalex [24]

Answer:

Activation\ Energy=2.5\times 10^{-19}\ J

Explanation:

Using the expression shown below as:

N_v=N\times e^{-\frac {Q_v}{k\times T}

Where,

N_v is the number of vacancies

N is the number of defective sites

k is Boltzmann's constant = 1.38\times 10^{-23}\ J/K

{Q_v} is the activation energy

T is the temperature

Given that:

N_v=2.3\times 10^{13}

N = 10 moles

1 mole = 6.023\times 10^{23}

So,

N = 10\times 6.023\times 10^{23}=6.023\times 10^{24}

Temperature = 425°C

The conversion of T( °C) to T(K) is shown below:

T(K) = T( °C) + 273.15  

So,  

T = (425 + 273.15) K = 698.15 K  

T = 698.15 K

Applying the values as:

2.3\times 10^{13}=6.023\times 10^{24}\times e^{-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

ln[\frac {2.3}{6.023}\times 10^{-11}]=-\frac {Q_v}{1.38\times 10^{-23}\times 698.15}

Q_v=2.5\times 10^{-19}\ J

4 0
2 years ago
Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3
goldenfox [79]

Answer:

Water enters a centrifugal pump axially at atmospheric pressure at a rate of 0.12 m3/s and at a velocity of 7 m/s, and leaves in the normal direction along the pump casing, as shown in Fig. PI3-39. Determine the force acting on the shaft (which is also the force acting on the bearing of the shaft) in the axial direction.

Step-by-step solution:

Step 1 of 5

Given data:-

The velocity of water is .

The water flow rate is.

3 0
3 years ago
Give me some examples of fragile structures.
Anvisha [2.4K]

Answer:

i don't know if this help tell me if i am wrong

Explanation:

Gravity is the force that pulls all elements of matter together. Matter refers to things you can physically touch. The more matter there is, the greater the amount of gravity or force. This means that the Earth or other planets have a great deal of pull and that everything on Earth is pulled back to Earth.

Some examples of the force of gravity include:

The force that holds the gases in the sun.

The force that causes a ball you throw in the air to come down again.

The force that causes a car to coast downhill even when you aren't stepping on the gas.

The force that causes a glass you drop to fall to the floor.

3 0
3 years ago
A vertical piston-cylinder device initially contains 0.2 m3 of air at 20°C. The mass of the piston is such that it maintains a c
Ann [662]

Answer:

Amount of air left in the cylinder=m_{2}=0.357 Kg

The amount of heat transfer=Q=0

Explanation:

Given

Initial pressure=P1=300 KPa

Initial volume=V1=0.2m^{3}

Initial temperature=T_{1}=20 C

Final Volume=V_{2}=0.1 m^{3}

Using gas equation

m_{1}=((P_{1}*V_{1})/(R*T_{1}))

m1==(300*0.2)/(.287*293)

m1=0.714 Kg

Similarly

m2=(P2*V2)/R*T2

m2=(300*0.1)/(0.287*293)

m2=0.357 Kg

Now calculate mass of air left,where me is the mass of air left.

me=m2-m1

me=0.715-0.357

mass of air left=me=0.357 Kg

To find heat transfer we need to apply energy balance equation.

Q=(m_{e}*h_{e})+(m_{2}*h_{2})-(m_{1}*h_{1})

Where me=m1-m2

And as the temperature remains constant,hence the enthalpy also remains constant.

h1=h2=he=h

Q=(me-(m1-m2))*h

me=m1-me

Thus heat transfer=Q=0

6 0
3 years ago
State two faults that are common in a simple cell​
Step2247 [10]

Answer:

the two defects of a simple cell are:

1. Polarization

2. Local action

4 0
2 years ago
Read 2 more answers
Other questions:
  • Whenever you are around construction sites, you should A speed up so you get through it quicker and avoid falling rocks B maneuv
    10·1 answer
  • The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
    12·1 answer
  • Stainless steel ball bearings (rho = 8085 kg/m3 and cp = 0.480 kJ/kg·°C) having a diameter of 1.2 cm are to be quenched in water
    10·2 answers
  • Need answers for these please ​
    15·1 answer
  • Suppose you have a Y-connected balanced three-phase load which consumes 200 kW with pf of 0.707 lagging. The line-to-line voltag
    14·1 answer
  • Which type of Bridge is considered the strongest in both compression and tension?
    11·2 answers
  • PLEASE HELP WITH THIS ASAP! Thanks
    6·1 answer
  • You have a 12 volt power source running through a circuit that has 3kΩ of resistance, how many amps (in mA) can flow through the
    15·1 answer
  • Could you please answer this question clearly?
    11·1 answer
  • What could I do to make this bridge hold more weight without making it heavier? Lateral bracing and a design on the top will be
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!