Answer:
Yes the water will be safe at the point of cooling water discharge
Explanation:
Power losses in plant= 350- 350×0.35=227.5MW
Rate of heat rejection to stream= 0.75× 227.5= 170.625MW
Rate of heat rejection= rate of flow of water× c × ΔT
170625000= 150000000× 4.186 × (Final temperature- 20)
Final temperature= 20.3 ◦C
The final temperature of stream will be 20.3 ◦C. Thechange is very small so the minnows will be able to handle this temperature.
Answer:
Considering the guidelines of this exercise.
The pieces produced per month are 504 000
The productivity ratio is 75%
Explanation:
To understand this answer we need to analyze the problem. First of all, we can only produce 2 batches of production by the press because we require 3 hours to set it up. So if we rest those 6 hours from the 8 of the shift we get 6, leaving 2 for an incomplete bath. So multiplying 2 batches per day of production by press we obtain 40 batches per day. So, considering we work in this factory for 21 days per month well that makes 40 x 21 making 840 then we multiply the batches for the pieces 840 x 600 obtaining 504000 pieces produced per month. To obtain the productivity ratio we need to divide the standard labor hours meaning 6 by the amount of time worked meaning 8. Obtaining 75% efficiency.
Answer:
c) can be made with a variety of surface finishes.
Explanation:
The missing options are;
When it comes to concrete work in construction, the concrete can be cast either in-situ or in form of pre-cast concrete.
Now in-situ concrete means concrete done on the construction site being built while pre cast concrete simply means concrete cast outside in a factory or yard and brought to site to mount.
These pre cast concrete could have different surface finishes as required as this is one of it's advantages over in situ because there is a lot of space and room to have the desired concrete finish.
a) are typically manufactured on site and then hoisted into place.
b) cannot be fiber-reinforced.
c) can be made with a variety of surface finishes.
d) never include insulation.
e) often are unreinforced.
Answer:
2074.2 KW
Explanation:
<u>Determine power developed at steady state </u>
First step : Determine mass flow rate ( m )
m / Mmax = ( AV )₁ P₁ / RT₁ -------------------- ( 1 )
<em> where : ( AV )₁ = 8.2 kg/s, P₁ = 0.35 * 10^6 N/m^2, R = 8.314 N.M / kmol , </em>
<em> T₁ = 720 K . </em>
insert values into equation 1
m = 0.1871 kmol/s ( mix )
Next : calculate power developed at steady state ( using ideal gas tables to get the h values of the gases )
W( power developed at steady state )
W = m [ Yco2 ( h1 - h2 )co2
Attached below is the remaining part of the detailed solution