1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denpristay [2]
3 years ago
8

The dimensions of the disk of our milky way galaxy are select one:

Physics
1 answer:
coldgirl [10]3 years ago
3 0
Mjhgfdcvghjhghgggggggggggggg
You might be interested in
An object that is speeding up is accelerating.<br> True<br> False
Stels [109]
True. The speed of any object will have faster acceleration, and eventually slow down due to gravity.
3 0
2 years ago
A basketball star covers 2.70 m horizontally in a jump to dunk the ball (see figure). His motion through space can be modeled pr
Likurg_2 [28]

Answer:

Part a)

T = 0.81 s

Part b)

v_x = 3.33 m/s

Part c)

v_y = 3.91 m/s

Part d)

\theta = 49.55 degree

Part e)

T = 1.11 s

Explanation:

Part a)

initial vertical position = 1.02 m

maximum height = 1.80 m

\Delta y = 1.80 - 1.02

\Delta y = 0.78 m

v_f^2 - v_y^2 = 2a \Delta y

0 - v_y^2 = 2(-9.81)(0.78)

v_y = 3.91 m/s

time taken by it to reach this height

v_y = v_i + at

0 = 3.91 - 9.81 t_1

t_1 = 0.39 s

Now when it again touch the ground then its speed is given as

v_f^2 - v_y^2 = 2a \Delta y

v_f^2 - 0 = 2(9.81)(1.80 - 0.95)

v_y = 4.08 m/s

time taken by it to reach this height

4.08 = v_i + at

4.08 = 0 + 9.81 t_2

t_2 = 0.42 s

T = t_1 + t_2

T = 0.81 s

Part b)

Horizontal velocity

v_x = \frac{x}{t}

v_x = \frac{2.70}{0.81}

v_x = 3.33 m/s

Part c)

vertical velocity is the intial y direction velocity

v_y = 3.91 m/s

Part d)

Take off angle is given as

tan\theta = \frac{3.91}{3.33}

\theta = 49.55 degree

Part e)

initial vertical position = 1.20 m

maximum height = 2.50 m

\Delta y = 2.50 - 1.20

\Delta y = 1.30 m

v_f^2 - v_y^2 = 2a \Delta y

0 - v_y^2 = 2(-9.81)(1.30)

v_y = 5.05 m/s

time taken by it to reach this height

v_y = v_i + at

0 = 5.05 - 9.81 t_1

t_1 = 0.51 s

Now when it again touch the ground then its speed is given as

v_f^2 - v_y^2 = 2a \Delta y

v_f^2 - 0 = 2(9.81)(2.50 - 0.72)

v_y = 5.9 m/s

time taken by it to reach this height

5.9 = v_i + at

5.9 = 0 + 9.81 t_2

t_2 = 0.60 s

T = t_1 + t_2

T = 1.11 s

5 0
2 years ago
A 150 g egg is dropped from 3.0 meters. The egg is
Lynna [10]

<u><em>Answer:</em></u>

<u><em> </em></u>

<u><em>9.2 N, with significant figure rounding (2 s.f.) </em></u>

<u><em></em></u>

<u><em>Explanation:</em></u>

<u><em>This problem can be solved using momentum. The following equation relates momentum (mass & velocity) with force and time:</em></u>

<u><em></em></u>

<u><em>Note that  where v is the final velocity and v₀ is the initial velocity. Δv just means change in velocity.</em></u>

<u><em></em></u>

<u><em>Mass of the egg is 150 g, but we need to convert to kilograms if we want to use Newtons as a unit. 150 g is equal to 0.15 kg. since 1000 g = 1kg. </em></u>

<u><em>m = 0.15 kg</em></u>

<u><em></em></u>

<u><em>The dropped from 3.0 meters is irrelevant as the question tells us the initial velocity of the egg: 4.4 m/s before it hits the ground.</em></u>

<u><em>v₀ = 4.4 m/s [down]</em></u>

<u><em></em></u>

<u><em>When it comes to a stop, the egg will have a velocity of 0.</em></u>

<u><em>v = 0 m/s</em></u>

<u><em></em></u>

<u><em>The time it takes for the egg to stop is 0.072 seconds.</em></u>

<u><em>Δt = 0.072 s</em></u>

<u><em></em></u>

<u><em>Therefore, if down is positive, then</em></u>

<u><em></em></u>

<u><em>   </em></u>

<u><em></em></u>

<u><em>We round to two significant figures since every quantity has two sig. figs.</em></u>

<u><em>We only care about the magnitude, not direction. The answer is 9.2 N.</em></u>

<u><em>Unlimited, ad-free access to all of the questions with Brainly Plus</em></u>

<u><em>START 7 DAY FREE TRIAL</em></u>

<u><em>Click to let others know, how helpful is it</em></u>

<u><em>5.0</em></u>

5 0
2 years ago
WHAT FEATURE DO ALL VOLCANOES SHARE? PLEASE LIST AT LEAST 3!!!
snow_tiger [21]
Rocky,hot,magma,underground and much more
7 0
3 years ago
Read 2 more answers
Find the cube roots of 27(cos 327° + i sin 327° ). Write the answer in trigonometric form.
Sati [7]

Answer:

z^{\frac{1}{3} }= -0.978 + i\cdot 2.836, z^{\frac{1}{3} }= -1.967 - i\cdot 2.265, z^{\frac{1}{3} }= 2.945 - i\cdot 0.571

Explanation:

The cube root of the complex number can determined by the following De Moivre's Formula:

z^{\frac{1}{n} } = r^{\frac{1}{n} }\cdot \left[\cos\left(\frac{x + 2\pi\cdot k}{n} \right) + i\cdot \sin\left(\frac{x+2\pi\cdot k}{n} \right)\right]

Where angles are measured in radians and k represents an integer between 0 and n - 1.

The magnitude of the complex number is 27 and the equivalent angular value is 1.817\pi. The set of cubic roots are, respectively:

k = 0

z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{1.817\pi}{3} \right)+i\cdot \sin\left(\frac{1.817\pi}{3} \right)]

z^{\frac{1}{3} }= -0.978 + i\cdot 2.836

k = 1

z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{3.817\pi}{3} \right)+i\cdot \sin\left(\frac{3.817\pi}{3} \right)]

z^{\frac{1}{3} }= -1.967 - i\cdot 2.265

k = 2

z^{\frac{1}{3} } = 3\cdot \left[\cos \left(\frac{5.817\pi}{3} \right)+i\cdot \sin\left(\frac{5.817\pi}{3} \right)]

z^{\frac{1}{3} }= 2.945 - i\cdot 0.571

5 0
3 years ago
Other questions:
  • A daring 510N swimmersdives off a cliff with a running horizontal lead.what must be her mimimum speed just as she leaves the top
    6·2 answers
  • Why are cockpits not pressurized
    13·1 answer
  • A man pulls a wagon with a handle that is at an angle of 42° with the ground. If the man pulls with 330 N of force, how much for
    9·2 answers
  • Is a roller coaster moving downhill is a potential or kinetic energy?
    7·1 answer
  • Oxygen is inhaled and is then distibuted throughout the bloodstream is what two body systems?​
    14·1 answer
  • Pollution that enters a water source directly through a pipe or other discharge outlet is called __________ pollution.
    7·2 answers
  • What is latent heat? Group of answer choices Energy released when water evaporates. Energy hidden in water vapor in the air. Ene
    14·1 answer
  • When the friction increases too much does the object stay still or moving opposite direction ​
    11·1 answer
  • A paper clip moves towards a magnet lying on a table. What forces are present in this situation? How do these forces compare?
    15·1 answer
  • Most scientists, inventors and engineers do not come up with their ideas all on their own but rather
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!