Answer: Sound Energy
Sound Energy
Explanation:The vibrations produced by the ringing bell causes waves of pressure that travel or propagate through the medium that is air. Sound energy is a form of mechanical energy that is generally associated with the motion and position of the ringing bell.
Question:
A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes
How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.
Answer:
S = 5.508 × 10¹¹m
V = 2.62 × 10⁸ m/s
Explanation:
The radius of the orbit of Jupiter, Rj is 43.2 light-minutes
radius of the orbit of Mars, Rm is 12.6 light-minutes
Distance travelled S = (Rj - Rm)
= 43.2 - 12.6 = 30.6 light- minutes
= 30.6 × (3 ×10⁸m/s) × 60 s
= 5.508 × 10¹¹m
time = 35mins = (35 × 60 secs)
= 2100 secs
speed = distance/time
V = 5.508 × 10¹¹m / 2100 s
V = 2.62 × 10⁸ m/s
The absolute uncertainty in the volume of the cube is 0.06 m³.
We need to know about the uncertainty of measurement to solve this problem. The uncertainty of cube volume can be determined by
V = s³
|ΔV| = dV/ds x Δs
where V is volume, s is length, ΔV is uncertainty in the volume and Δs is the uncertainty of length.
From the question above, we know that
s = 1.00 m
Δs = 2% of s = 2/100 x 1 = 0.02 m
By using the uncertainty of volume formula, we get
|ΔV| = dV/ds x Δs
|ΔV| = d(s³)/ds x Δs
|ΔV| = 3s² x Δs
|ΔV| = 3. 1² x 0.02
|ΔV| = 0.06 m³
Hence, the uncertainty in the volume is 0.06 m³.
Find more on uncertainty at: brainly.com/question/1577893
#SPJ4
<span>Water is known as the universal solvent because it is capable of dissolving a variety of substances, more than any other liquid.
Hope this helps!</span>
Answer:
As a pendulum moves toward the equilibrium position, velocity increases and acceleration decreases. As the pendulum moves away from the equilibrium position, velocity decreases and acceleration increases.
Explanation:
Using the law of conservation of energy, we know that Em1=Em2.
Em1 (at the highest point) = Eg + Ek, where Ek is 0
Em2 (at the equilibrium point) = Eg +Ek, where Eg is 0
This makes sense. At the highest point, the pendulum is at its maximum height. At this point, however, it stops moving, so its velocity is 0. At the equilibrium point, the pendulum is at its lowest height (i.e. h=0). At this point, however, its moving at its maximum velocity. This velocity is constant, which means that acceleration is 0.