Answer:
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
Explanation:
The balanced reaction between nitrogen and hydrogen molecules to give ammonia molecules is:

Thus one molecule of nitrogen will react with three molecules of hydrogen to give two molecules of ammonia.
We have six molecules of each nitrogen and hydrogen in the closed container and they undergo complete reaction it means the limiting reagent is hydrogen. For six molecules of nitrogen, eighteen molecules of hydrogen will be required.
So six molecules of hydrogen will react with two molecules of nitrogen to give four molecules of ammonia.
The product mixture will have
a) No molecules of hydrogen
b) four molecules of ammonia
c) four left molecules of nitrogen.
4. 2Li + 2H2O -> 2LiOH + H2
5. C6H12O6 + 6O2 -> 6CO2 + 6H2O
6. Zn + 2HCl -> ZnCl2 + H2
9. H2SO4 + Pb -> PbSO4 + H2
10. Ca(OH)2 + NH4Cl -> NH4 + CaCl2 + H2O
thats all i know
Answer:
The internal energy is the total amount of kinetic energy and potential energy of all the particles in the system. ... When the substance melts or boils, energy is put in to breaking the bonds that are holding particles together, which increases the potential energy.
Explanation:
Answer:
29.575%
Explanation:
Data provided:
Calories taken in daily diet = 2000
Recommended amount of fat = 65 grams
Average number of calories for fat = 9.1 calories / g
Thus,
Number of calories in the diet with average number of calories for fat
= Recommended amount of fat × Average number of calories for fat
= 65 × 9.1
= 591.5 calories
Therefore,
the percentage of calories in his diet supplied = ( 591.5 / 2000 ) × 100
= 29.575%
Molar mass H₂O = 18.0 g/mol
number of moles :
1.0 / 18.0 => 0.055 moles
1 mole -------------- 6.02 x 10²³ molecules
0.055 moles -------- ? molecules
molecules = 0.055 x ( 6.02 x 10²³) / 1
molecules = 3.311x10²² / 1
= 3.311 x 10²² molecules
hope this helps!