Explanation:
Let the mass of isoamyl acetate be 100g.
Moles of Carbon = 60.58/12 = 5.048mol
Moles of Hydrogen = 7.07/1 = 7.07mol
Moles of Oxygen = 32.28/16 = 2.018mol
Mole Ratio of C : H : O
= 5.048 : 7.07 : 2.018
= 5 : 7 : 2.
Hence the empirical formula of isoamyl acetate is C5H7O2.
Answer:
0.6258 g
Explanation:
To determine the number grams of aluminum in the above reaction;
- determine the number of moles of HCl
- determine the mole ratio,
- use the mole ratio to calculate the number of moles of aluminum.
- use RFM of Aluminum to determine the grams required.
<u>Moles </u><u>of </u><u>HCl</u>
35 mL of 2.0 M HCl
2 moles of HCl is contained in 1000 mL
x moles of HCl is contained in 35 mL

We have 0.07 moles of HCl.
<u>Mole </u><u>ratio</u>
6HCl(aq) + 2Al(s) --> 2AlCl3(aq) + 3H2(g)
Hence mole ratio = 6 : 2 (HCl : Al
- but moles of HCl is 0.07, therefore the moles of Al;

Therefore we have 0.0233333 moles of aluminum.
<u>Grams of </u><u>Aluminum</u>
We use the formula;

The RFM (Relative formula mass) of aluminum is 26.982g/mol.
Substitute values into the formula;

The number of grams of aluminum required to react with HCl is 0.6258 g.
I think the best answer that will describe chemical change is the first option. During a chemical change, b<span>oth the identity and the properties of a substance change because new substances are being formed by a chemical reaction. An example is rusting of steel</span>
Relative energies are in the order:
s < p < d < f
And the shape of these orbitals are
s - spherical
p - dumbbell
d - double dumbbell
f - double double dumbbell