PKa= 4.9 therefore ka= 10^-4.9= 1.259x10^-5
![ka= \frac{[H^+][CH3CH2COO^-]}{[CH3CH2COOH]}](https://tex.z-dn.net/?f=ka%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BCH3CH2COO%5E-%5D%7D%7B%5BCH3CH2COOH%5D%7D%20)
![[CH3CH2COO^-] ](https://tex.z-dn.net/?f=%5BCH3CH2COO%5E-%5D%0A)
= 0.05
![[CH3CH2COOH]](https://tex.z-dn.net/?f=%5BCH3CH2COOH%5D)
= 0.10
Therefore 1.259x10^-5 =
![\frac{[H^+][0.05]}{[0.1]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BH%5E%2B%5D%5B0.05%5D%7D%7B%5B0.1%5D%7D%20)
Rearrange the equation to make the concentration of hydrogen the subject.
Therefore
![[H^+] = \frac{(1.259*10^-5)(0.1)}{0.05}](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%20%3D%20%20%5Cfrac%7B%281.259%2A10%5E-5%29%280.1%29%7D%7B0.05%7D%20%20)
Therefore
![[H^+]= 2.513*10^-5](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%202.513%2A10%5E-5)
pH= -log [

] = -log(2.513*10^-5)= 4.59.
<h2>Answer:</h2>
The mass of the system will remain the same if there is no conversion of mass to energy in the reaction.
<h3>Explanation:</h3>
- If the system is closed, then according to the law of mass conservation the mass of the reaction system will remain the same.
- <u><em>Law of conservation of the mass: In simple words, it is described as the mass of a closed system can never be changed, it may transfer from one form to another or change into energy.</em></u>
- But if the reaction involves energy transfer like heat or light production, in this case, the mass can be changed.
Putting glue on something, because once it is set in you cannot change it back.
Answer:
The total pressure would be 8, 93 atm
Explanation:
We apply Dalton's laws, where for a gaseous mixture, the total pressure (Pt) is the sum of the partial pressures (Px) of the gases that make up the mixture.
Pt= Pxa + Pxb+ Pxc....
Pt=2, 20 atm+ 6, 70 atm+ 0,03 atm= 8, 93 atm
Answer:
denotes the molar hydrogen ion concentration
Explanation: