Hello!
First you need to calculate q
<span>delta U is change in internal energy </span>
<span>delta U = q + w </span>
<span>q is heat and w work done </span>
<span>here work was done by the system means energy leaving the system so w is negative </span>
<span>delta U = q + w </span>
<span>q = delta U - w = 6865 J - (-346 J) = 7211 J = 7.211 KJ </span>
<span>q = m x c x delta T </span>
<span>7211 J = 80.0 g x c x (225-25) °C </span>
<span>c = 0.451 J /g °C
</span>
Hope this Helps! Have A Wonderful Day! :)
<span>B.by arranging the elements according to atomic number instead of atomic mass</span> awnser is B
Answer:0.026ml
Explanation:
Details are found in the image attached. We must subtract the saturated vapour pressure of hydrogen gas at the given temperature from the total pressure of the hydrogen gas collected over water to obtain the actual pressure of hydrogen gas and substitute the value obtained into the general gas equation. The dry hydrogen gas has no saturated vapour pressure hence the value is substituted as given. All temperatures must be converted to Kelvin before substitution.
Scientist arrange there data in coding and research.
Answer:
The new force will be \frac{1}{100} of the original force.
Explanation:
In the context of this problem, we're dealing with the law of gravitational attraction. The law states that the gravitational force between two object is directly proportional to the product of their masses and inversely proportional to the square of a distance between them.
That said, let's say that our equation for the initial force is:
![F = G\frac{m_1m_2}{R^2}The problem states that the distance decrease to 1/10 of the original distance, this means:[tex]R_2 = \frac{1}{10}R](https://tex.z-dn.net/?f=F%20%3D%20G%5Cfrac%7Bm_1m_2%7D%7BR%5E2%7D%3C%2Fp%3E%3Cp%3EThe%20problem%20states%20%20that%20%20the%20distance%20decrease%20to%201%2F10%20of%20the%20original%20distance%2C%20this%20means%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DR_2%20%3D%20%5Cfrac%7B1%7D%7B10%7DR)
And the force at this distance would be written in terms of the same equation:

Find the ratio between the final and the initial force:

Substitute the value for the final distance in terms of the initial distance:

Simplify:

This means the new force will be \frac{1}{100} of the original force.