F(x)=(2/3)x^1.5
The centroid position along the x-axis can be obtained by
integrating the function * x to get the moment about the y-axis,
then divide by the area of the graph,
all between x=0 to x=3.5m.
Expressed mathematically,
x_bar=(∫f(x)*x dx )/(∫ f(x) dx limits are between x=0 and x=3.5m
=15.278 m^3 / 6.1113 m^2
=2.500 m
Answer:

First tangent line:

Second tangent line:

Notice: slope of -1 means that both
are equal to -1, so 
Answer:
The values of x and y are x = 6 and y = 9Step-by-step explanation:
MNOP is a parallelogram its diagonal MO and PN intersected at point A
In any parallelogram diagonals:
Bisect each other
Meet each other at their mid-point
In parallelogram MNOP
∵ MO and NP are its diagonal
∵ MO intersect NP at point A
- Point A is the mid-point pf them
∴ MO and NP bisect each other
∴ MA = AO
∴ PA = AN
∵ MA = x + 5
∵ AO = y + 2
- Equate them
∴ x + 5 = y + 2 ⇒ (1)
∵ PA = 3x
∵ AN = 2y
- Equate them
∴ 2y = 3x
- Divide both sides by 2
∴ y = 1.5x ⇒ (2)
Now we have a system of equations to solve it
Substitute y in equation (1) by equation (2)
∴ x + 5 = 1.5x + 2
- Subtract 1.5x from both sides
∴ - 0.5x + 5 = 2
- Subtract 5 from both sides
∴ - 0.5x = -3
- Divide both sides by - 0.5
∴ x = 6
- Substitute the value of x in equation (2) to find y
∵ y = 1.5(6)
∴ y = 9
The values of x and y are x = 6 and y = 9
Answer:
x = y = -2
Step-by-step explanation:
Hope this helps
(5,24)
- The two areas are the same.
- To find the area, we multiply the side lengths. Y=area
Rectangle 1: side lengths 4 and (x+1)
y=4(x+1)= 4x+4
Rectangle 2: side lengths 3 and (2x-2)
y=3(2x-2)= 6x-6
- Since the two areas are same, we can conclude that
4x+4=6x-6
-2x=-10, x=5
- Since x is 5, we can plug it into the equations to find y.
Option 1 with rectangle 1: y=4(5)+4, y=24
Option 2 with rectangle 2: y=6(5)-5, y=24
I graphed the linear equation on desmos.