1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
6

1. An object on Earth and the same object on the Moon would have a difference in

Physics
2 answers:
MrRa [10]3 years ago
8 0

Answer:

send ur sex photo please please please please

Feliz [49]3 years ago
5 0

Answers: (1) a. weight, (2)b. Force changes by 2/9, (3)b. movement, (4)a. 40,000 Joules, (5)c. the soil will be 5°C.

<h2>Answer 1: a. weight</h2>

Mass and weight are very different concepts.  

Mass is the amount of matter that exists in a body, which only depends on the quantity and type of particles within it. This means mass is an intrinsic property of each body and remains the same regardless of where the body is located.  

On the other hand, weight is a measure of the gravitational force acting on an object and is directly proportional to the product of the mass m of the body by the acceleration of gravity g:  

W=m.g  

Then, since the Earth and the Moon have different values ​​of gravity, t<u>he weight of an object in each place will vary</u>, but its mass will not.

<h2>Answer 2: b. Force changes by 2/9</h2>

According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:  

F=G\frac{m_{1}m_{2}}{r^2} (1)

Where:  

F is the module of the force exerted between both bodies  

G is the universal gravitation constant

m_{1} and m_{2} are the masses of both bodies.

r is the distance between both bodies

If we double the mass of one object (for example 2m_{1}) and triple the distance between both (for example 3r). The equation (1) will be rewritten as:

F=G\frac{2m_{1}m_{2}}{(3r)^2} (2)

F=\frac{2}{9}G\frac{m_{1}m_{2}}{r^2} (3)

If we compare (1) and (2) we will be able to see the force changes by 2/9.

<h2>Answer 3: b. movement</h2>

The Work W done by a Force F refers to the release of potential energy from a body that is <u>moved</u> by the application of that force to overcome a resistance along a path.  

When the applied force is constant and <u>the direction of the force and the direction of the movement are parallel,</u> the equation to calculate it is:  

W=(F)(d)

Now, <u>when they are not parallel, both directions form an angle</u>, let's call it \alpha. In that case the expression to calculate the Work is:  

W=Fdcos{\alpha}

Therefore, pushing on a rock accomplishes no work unless there is movement (independently of the fact that movement is parallel to the applied force or not).

<h2>Answer 4: a. 40,000 Joules</h2>

The Kinetic Energy is given by:

K=\frac{1}{2}mV^{2}   (4)

Where m is the mass of the body and V its velocity

For the first case (kinetic energy K_{1}=10000J  for a car at V_{1}=30 mph=13.4112m/s):

K_{1}=\frac{1}{2}mV_{1}^{2}   (5)

Finding m:

m=\frac{2K_{1}}{V_{1}^{2}}   (6)

m=\frac{2(10000J)}{(13.4112m/s)^{2}}   (7)

m=111.197kg   (8)

For the second case (unknown kinetic energy K_{2}  for a car with the same mass at V_{2}=60 mph=26.8224m/s):

K_{2}=\frac{1}{2}mV_{2}^{2}   (9)

K_{2}=\frac{1}{2}(111.197kg)(26.8224m/s)^{2}   (10)

K_{2}=40000J   (11)

<h2>Answer 5: c. the soil will be 5°C</h2>

The formula to calculate the amount of calories Q is:

Q=m. c. \Delta T   (12)

Where:

m  is the mass

c  is the specific heat of the element. For water is c_{w}=1 kcal/g\°C  and for soil is c_{s}=0.20 kcal/g\°C  

\Delta T  is the variation in temperature (the amount we want to find for both elements)

This means we have to clear \Delta T from (12) :

\Delta T=\frac{Q}{m.c}   (13)

For Water:

\Delta T_{w}=\frac{Q_{w}}{m_{w}.c_{w}}   (14)

\Delta T_{w}=\frac{1kcal}{(1kg)(1 kcal/g\°C)}   (15)

\Delta T_{w}=1\°C)}   (16)

For Soil:

\Delta T_{s}=\frac{Q_{s}}{m_{s.c_{s}}   (17)

\Delta T_{s}=\frac{1kcal}{(1kg)(0.20 kcal/g\°C)}   (18)

\Delta T_{s}=5\°C)}   (19)

Hence the correct option is c.

You might be interested in
I need to figure out A but i’m not sure how
Damm [24]

Answer:

cc

Explanation:

4 0
2 years ago
Which of the following wavelengths will produce standing waves on a string that is 3.5 m long?
denpristay [2]

In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

\lambda=\frac{2}{n} L


The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

\lambda=\frac{2}{1} \cdot 3.5 m=7.0 m


The wavelength of the 2nd harmonic is:

\lambda=\frac{2}{2} \cdot 3.5 m=3.5 m


The wavelength of the 4th harmonic is:

\lambda=\frac{2}{4} \cdot 3.5 m=1.75 m


It is not possible to find any integer n such that \lambda=5 m, therefore the correct options are A, B and D.

3 0
2 years ago
Read 2 more answers
a scale model of the solar system where 50 cm represents 1.0x10 to the fifth km is actual distance what would be the dimension o
Fofino [41]

The distance between Mars and the Sun in the scale model would be 1140 m

Explanation:

In this scale model, we have:

x_1 = 50 cm represents an actual distance of

d_1 = 1.0\cdot 10^5 km

The actual distance between Mars and the Sun is 228 million km, therefore

d_2=228\cdot 10^6 km

On the scale model, this would corresponds to a distance of x_2.

Therefore, we can write the following proportion:

\frac{x_1}{d_1}=\frac{x_2}{d_2}

And solving for x_2, we find:

x_2=\frac{x_1 d_2}{d_1}=\frac{(50)(228\cdot 10^6)}{1\cdot 10^5}=1.14\cdot 10^5 cm = 1140 m

Learn more about distance:

brainly.com/question/3969582

#LearnwithBrainly

4 0
3 years ago
A bicycle rider traveling east at 10 km/hr sees a blue car pass her appearing to travel west at 50 km/hr. What is the blue car's
BigorU [14]

Answer:

v_{bR} = 25 km/h towards west

Explanation:

As we know that the speed of the blue car as appear to the bicycle rider is given as

v_{bc} = 50 km/h towards west

also it is given that bicycle is moving at speed of 10 km/h towards East

so here we have

v_{bc} = v_b - v_c

so we have

v_b = v_{bc} + v_c

v_b = -50 + 10 = 40 km/h towards west

now speed of the red car is given as 15 km/h towards west

so here the relative speed of blue car with respect to red car is given as

v_{bR} = v_b - v_R

v_{bR} = 40 - 15 = 25 km/h towards west

8 0
3 years ago
What do radio waves and gamma rays have in common?
Reil [10]

Answer:

The only difference between radio waves, visible light and gamma rays is the energy of the photons.'

Bothrays have photons, but in radio waves they are weaker.

7 0
3 years ago
Read 2 more answers
Other questions:
  • In an alcohol-in-glass thermometer, the alcohol column has length 12.66 cm at 0.0 ∘C and length 22.49 cm at 100.0 ∘C. Part A Wha
    13·1 answer
  • For a vertical spring-mass oscillator that is moving up and down, which of the following statements are true? (more than one sta
    8·1 answer
  • The gravitational force of Earth is causing volcanoes on the moon. <br> True<br><br> False
    14·2 answers
  • On a floor directly underneath a second-floor balcony, there are several spherical drops of blood about 7 mm in diameter. Which
    12·1 answer
  • The thermal conductivity of a sheet of rigid, extruded insulation is reported to be k=0.029 W/m.K. The measured temperature diff
    8·1 answer
  • Helelepppppppppppapap
    8·1 answer
  • An object travels 20 m in 10s What is its speed?
    11·1 answer
  • g What is the final velocity of a hoop that rolls without slipping down a 6.92 m high hill, starting from rest
    9·1 answer
  • What is the current of the ammeter?
    10·2 answers
  • Acceleration of a particle moving along x axis is given
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!