1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arturiano [62]
3 years ago
6

1. An object on Earth and the same object on the Moon would have a difference in

Physics
2 answers:
MrRa [10]3 years ago
8 0

Answer:

send ur sex photo please please please please

Feliz [49]3 years ago
5 0

Answers: (1) a. weight, (2)b. Force changes by 2/9, (3)b. movement, (4)a. 40,000 Joules, (5)c. the soil will be 5°C.

<h2>Answer 1: a. weight</h2>

Mass and weight are very different concepts.  

Mass is the amount of matter that exists in a body, which only depends on the quantity and type of particles within it. This means mass is an intrinsic property of each body and remains the same regardless of where the body is located.  

On the other hand, weight is a measure of the gravitational force acting on an object and is directly proportional to the product of the mass m of the body by the acceleration of gravity g:  

W=m.g  

Then, since the Earth and the Moon have different values ​​of gravity, t<u>he weight of an object in each place will vary</u>, but its mass will not.

<h2>Answer 2: b. Force changes by 2/9</h2>

According to the law of universal gravitation, which is a classical physical law that describes the gravitational interaction between different bodies with mass:  

F=G\frac{m_{1}m_{2}}{r^2} (1)

Where:  

F is the module of the force exerted between both bodies  

G is the universal gravitation constant

m_{1} and m_{2} are the masses of both bodies.

r is the distance between both bodies

If we double the mass of one object (for example 2m_{1}) and triple the distance between both (for example 3r). The equation (1) will be rewritten as:

F=G\frac{2m_{1}m_{2}}{(3r)^2} (2)

F=\frac{2}{9}G\frac{m_{1}m_{2}}{r^2} (3)

If we compare (1) and (2) we will be able to see the force changes by 2/9.

<h2>Answer 3: b. movement</h2>

The Work W done by a Force F refers to the release of potential energy from a body that is <u>moved</u> by the application of that force to overcome a resistance along a path.  

When the applied force is constant and <u>the direction of the force and the direction of the movement are parallel,</u> the equation to calculate it is:  

W=(F)(d)

Now, <u>when they are not parallel, both directions form an angle</u>, let's call it \alpha. In that case the expression to calculate the Work is:  

W=Fdcos{\alpha}

Therefore, pushing on a rock accomplishes no work unless there is movement (independently of the fact that movement is parallel to the applied force or not).

<h2>Answer 4: a. 40,000 Joules</h2>

The Kinetic Energy is given by:

K=\frac{1}{2}mV^{2}   (4)

Where m is the mass of the body and V its velocity

For the first case (kinetic energy K_{1}=10000J  for a car at V_{1}=30 mph=13.4112m/s):

K_{1}=\frac{1}{2}mV_{1}^{2}   (5)

Finding m:

m=\frac{2K_{1}}{V_{1}^{2}}   (6)

m=\frac{2(10000J)}{(13.4112m/s)^{2}}   (7)

m=111.197kg   (8)

For the second case (unknown kinetic energy K_{2}  for a car with the same mass at V_{2}=60 mph=26.8224m/s):

K_{2}=\frac{1}{2}mV_{2}^{2}   (9)

K_{2}=\frac{1}{2}(111.197kg)(26.8224m/s)^{2}   (10)

K_{2}=40000J   (11)

<h2>Answer 5: c. the soil will be 5°C</h2>

The formula to calculate the amount of calories Q is:

Q=m. c. \Delta T   (12)

Where:

m  is the mass

c  is the specific heat of the element. For water is c_{w}=1 kcal/g\°C  and for soil is c_{s}=0.20 kcal/g\°C  

\Delta T  is the variation in temperature (the amount we want to find for both elements)

This means we have to clear \Delta T from (12) :

\Delta T=\frac{Q}{m.c}   (13)

For Water:

\Delta T_{w}=\frac{Q_{w}}{m_{w}.c_{w}}   (14)

\Delta T_{w}=\frac{1kcal}{(1kg)(1 kcal/g\°C)}   (15)

\Delta T_{w}=1\°C)}   (16)

For Soil:

\Delta T_{s}=\frac{Q_{s}}{m_{s.c_{s}}   (17)

\Delta T_{s}=\frac{1kcal}{(1kg)(0.20 kcal/g\°C)}   (18)

\Delta T_{s}=5\°C)}   (19)

Hence the correct option is c.

You might be interested in
A soccer player kicks a ball, applying a force of 1,000 newtons over a distance of 0. 2 meter. The ball travels 50 meters down t
Fed [463]
500 i think i’m wrong though
8 0
2 years ago
Please i need detailed explanation​
zubka84 [21]

Answer:

2Micro Farahds

Explanation:

Its in the picture.

I Hope it helps.

4 0
3 years ago
A 1.00-kg object is attached by a thread of negligible mass, which passes over a pulley of negligible mass, to a 2.00-kg object.
Anna [14]

Answer:

a = 3.27 m/s²

v = 2.56 m/s

Explanation:

given,

mass A = 1 kg

mass B = 2 kg

vertical distance between them = 1 m

F_d = mg

F_d = 2 \times 9.8

F_d = 19.6\ N

F_u = mg

F_u = 1 \times 9.8

F_u = 9.8\ N

F_{net} = 19.6 - 9.8

F_{net}=9.8\ N

F = (m_1+m_2)a

9.8 = (2+1)a

a = 3.27 m/s²

The speed of the system at that moment is:

v² = u² + 2×a×s

v² = 0² + 2× 3.27 × 1

v ² = 6.54

v = 2.56 m/s

3 0
3 years ago
12) Photosynthesis is a chemical reaction where carbon dioxide and water react to form glucose (C6H12O6) and oxygen gas. Which r
marusya05 [52]
6CO2 + 6H2O → C6H12O6 + 6O2
4 0
3 years ago
Read 2 more answers
An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which
PolarNik [594]

Answer:

R=m*g-∀fl*g*l3

Explanation:

<em>An iron block of density rhoFe and of volume l 3 is immersed in a fluid of density rhofluid. The block hangs from a scale which reads W as the weight. The top of the block is a height h below the surface of the fluid. The correct equation for the reading of the scale is</em>

From Archimedes' principle we know that a body when immersed in a fluid, fully or partially, experiences an the upward buoyant force equal to the weight of the fluid displaced. As the body is fully submerged in water, volume of water displaced  

density of iron =mass/ volume

rho=m/l3

mass=rhol3

weight fluid=rhofluid*g*Volume

weight of fluid=rhofluid*g*l3

F=∀fl*g*l3

Downward force is weight of iron

w=m*g

Reading on the spring scale

R=w-F

R=m*g-∀fl*g*l3

m=mass of iron

g=acceleration due to ravity

rhfld=density of fluid

l3=volume of fluid displaced

6 0
3 years ago
Other questions:
  • A satellite is in a circular orbit 8200 km above the Earth’s surface; i.e., it moves on a circular path under the influence of n
    15·1 answer
  • A current in a secondary coil is induced only if:
    14·1 answer
  • a car travelling at 50km/h from rest covers a distance of 10km in 40minutes. Calculate the acceleration​
    9·1 answer
  • Aliens come blasting into our solar system and wipe out everything but the Sun, the Earth, and Jupiter. Discuss (conceptually) w
    10·1 answer
  • Determine the smallest distance x to a position where 450-nm light reflected from the top surface of the glass interferes constr
    13·1 answer
  • A fly sits on a potter's wheel 0.30 m from its axle. The wheel's rotational speed decreases from 4.0 rad/s to 2.0 rad/s in 5.0 s
    9·2 answers
  • In a Joule experiment, a mass of 6.51 kg falls through a height of 66.8 m and rotates a paddle wheel that stirs 0.68 kg of water
    12·1 answer
  • An object has a mass of 14 grams and a density of 7 g/mL. When placed in water it sinks. What is the Volume of water displaced?
    7·1 answer
  • 1.
    14·2 answers
  • A ball is thrown horizontally from the top of a building 100m high. The ball strikes the ground at a point 120 m horizontally aw
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!