1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leona [35]
3 years ago
5

A four-cylinder, four-stroke internal combustion engine operates at 2800 RPM. The processes within each cylinder are modeled as

an air-standard Otto cycle with a pressure of 14.7 lbf/in. 2 , a temperature of 80 8 F, and a volume of 0.0196 ft 3 at the beginning of compression. The compression ratio is 10, and maximum pressure in the cycle is 1080 lbf/in.Write possible Assumptions no less than three assumptionsDetermine, using a cold air-standard analysis with k 5 1.4, the power developed by the engine, in horsepower, and the mean effective pressure, in lbf/in.
Engineering
1 answer:
Ulleksa [173]3 years ago
4 0

Answer:

1) 287760.4 Hp

2) 18410899.5 kPa

Explanation:

The parameters given are;

p₁ = 14.7 lbf/in² = 101325.9 Pa

v₁ = 0.0196 ft³ = 0.00055501 m³

T₁ = 80°F = 299.8167 K

k = 1.4

Assumptions;

1) Air standard conditions are appropriate

2) There are negligible potential and kinetic energy changes

3) The air behaves as an ideal gas and has constant specific heat capacities of temperature and pressure

1) Process 1 to 2

Isentropic compression

T₂/T₁ = (v₁/v₂)^(1.4 - 1) = 10^0.4

p₂/p₁ = (v₁/v₂)^(1.4)

p₂ = p₁×10^0.4 =  101325.9*10^0.4 = 254519.153 Pa

T₂ = 299.8167*10^0.4 = 753.106 K

p₃ = 1080 lbf/in² = 7,446,338 Pa

Stage 2 to 3 is a constant volume process

p₃/T₃ = p₂/T₂

7,446,338/T₃ =   254519.153/753.106

T₃ = 7,446,338/(254519.153/753.106) = 22033.24 K

T₃/T₄ = (v₁/v₂)^(1.4 - 1) = 10^0.4

T₄ = 22033.24/(10^0.4) = 8771.59 K

The heat supplied, Q₁ = cv(T₃ - T₂) = 0.718*(22033.24 -753.106) = 15279.14 kJ

The heat rejected = cv(T₄ - T₁) = 0.718*(8771.59 - 299.8167) = 6082.73 kJ

W(net) = The heat supplied - The heat rejected = (15279.14 - 6082.73) = 9196.41 kJ

The power = W(net) × RPM/2*1/60 = 9196.41 * 2800/2*1/60 = 214582.9 kW

The power by the engine = 214582.9 kW = 287760.4 Hp

2) The mean effective pressure, MEP  = W(net)/(v₁ - v₂)

v₁ = 0.00055501 m³

v₁/v₂ = 10

v₂ = v₁/10 = 0.00055501/10 = 0.000055501

MEP  = 9196.41/(0.00055501 -  0.000055501) = 18410899.5 kPa

You might be interested in
A lake has a carrying capacity of 10,000 fish. At the current level of fishing, 2,000 fish per year are taken with the catch uni
arlik [135]

Answer:

The population size would be p' = 5000

The yield would be    MaxYield = 2082 \ fishes \ per \ year

Explanation:

So in this problem we are going to be examining the application of a  population dynamics a fishing pond and stock fishing and objective would be to obtain the maximum sustainable yield and and the population of the fish at the obtained maximum sustainable yield,  so basically we would be applying an engineering solution to fishing

 

    So the current  yield which is mathematically represented as

                               \frac{dN}{dt} =   \frac{2000}{1 \ year }

 Where dN is the change in the number of fish

            and dt is the change in time

So in order to obtain the solution we need to obtain the  rate of growth

    For this we would be making use of the growth rate equation which is

                                      r = \frac{[\frac{dN}{dt}] }{N[1-\frac{N}{K} ]}

  Where N is the population of the fish which is given as 4,000 fishes

          and  K is the carrying capacity which is given as 10,000 fishes

             r is the growth rate

        Substituting these values into the equation

                              r = \frac{[\frac{2000}{year}] }{4000[1-\frac{4000}{10,000} ]}  =0.833

The maximum sustainable yield would be dependent on the growth rate an the carrying capacity and this mathematically represented as

                      Max Yield  = \frac{rK}{4} = \frac{(10,000)(0.833)}{4} = 2082 \ fishes \ per \ year

So since the maximum sustainable yield is 2082 then the the population need to be higher than 4,000 so in order to ensure a that this maximum yield the population size denoted by p' would be

                          p' = \frac{K}{2}  = \frac{10,000}{2}  = 5000\ fishes          

7 0
3 years ago
Read 2 more answers
Just to let you know Christmas is in 10 days&lt;3<br><br> lol
Harrizon [31]

Answer:

yay yay

Explanation:

im so excited i cant wait

7 0
3 years ago
Read 2 more answers
Compressed Air In a piston-cylinder device, 10 gr of air is compressed isentropically. The air is initially at 27 °C and 110 kPa
Helen [10]

Answer:

(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ

Explanation:

Solution

Recall that:

A 10 gr of air is compressed isentropically

The initial air is at = 27 °C, 110 kPa

After compression air is at = a450 °C

For air,  R=287 J/kg.K

cv = 716.5 J/kg.K

y = 1.4

Now,

(a) W efind the pressure on [MPa]

Thus,

T₂/T₁ = (p₂/p₁)^r-1/r

=(450 + 273)/27 + 273) =

=(p₂/110) ^0.4/1.4

p₂ becomes  2390.3 kPa

So, p₂ = 2.39 MPa

(b) For the increase in total internal energy, is given below:

ΔU = mCv (T₂ - T₁)

=(10/100) (716.5) (450 -27)

ΔU =3030 J

ΔU =3.03 kJ

(c) The next step is to find the total work needed in kJ

ΔW = mR ( (T₂ - T₁) / k- 1

(10/100) (287) (450 -27)/1.4 -1

ΔW = 3035 J

Hence, the total work required is = 3.035 kJ

4 0
3 years ago
Liquid flows with a free surface around a bend. The liquid is inviscid and incompressible, and the flow is steady and irrotation
lions [1.4K]

Answer:

9 cm

Explanation:

The liquid on the bend will be affected by two accelerations: gravity and centripetal force.

Gravity will be of 9.81 m/s^2 pointing down at all points.

The centripetal acceleration will be of

ac = v^2/r

Pointing to the center of the bend (perpendicular to gravity).

The velocity will depend on the radius

v = (1 m^2/s) / r

Replacing:

ac = (1/r)^2 / r

ac = (1 m^4/s^2) / r^3

If we set up a cylindrical reference system with origin at the center of the bend, the total acceleration will be

a = (-1/r^3 * i - 9.81 * j)

The surface of the liquid will be an equipotential surface, this means all points on the surface have the same potential energy.

The potential energy of the gravity field is:

pg = g * h

The potential energy of the centripetal force is:

pc = ac * r

Then the potential field is:

p = -1/r^2 * - 9.81*h

Points on the surface at r = 1 m and r = 3 m have the same potential.

-1/1^2 * - 9.81*h1 = -1/3^2 * - 9.81*h2

-1 - 9.81*h1 = -1/9 - 9.81*h2

-1 + 1/9 = 9.81 * (h1 - h2)

h1 - h2 = (-8/9) / 9.81

h2 - h1 = 0.09 m

The outer part will be 9 cm higher than the inner part.

3 0
3 years ago
Many BLANK apply trial and error to develop a product. Please Help! I have one hour to finish. 30 points
Julli [10]

Answer:

Entrepreneurs?

Explanation:

8 0
3 years ago
Other questions:
  • In Victorious, when everyone was trapped in the RV, who wasn’t? And what were they doing??
    10·1 answer
  • What is the zone that has just been added to the exchange zone where athletes may now hand off the baton
    5·1 answer
  • If the 1550-lb boom AB, the 190-lb cage BCD, and the 169-lb man have centers of gravity located at points G1, G2 and G3, respect
    11·1 answer
  • A labor-intensive process to manufacture a product has a fixed cost of $338,000 and a variable cost of $143 per unit. An automat
    5·1 answer
  • In an experiment, the local heat transfer over a flat plate were correlated in the form of local Nusselt number as expressed by
    5·1 answer
  • Roads in rural areas are _______.
    15·2 answers
  • A bar of steel has the minimum properties Se = 40 kpsi, S = 60 kpsi, and S-80 kpsi. The bar is subjected to a steady torsional s
    6·1 answer
  • Four subjects civil engineers need to study​
    12·1 answer
  • Convert 103.69 kN to TN.
    14·1 answer
  • True or false for the 4 questions?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!