Answer:
true
Explanation:
shear strain is define as the ratio of change in deformation to the original length perpendicular to the axes of member due to shear stress.
ε = deformation/original length
strain is a unit less quantity but shear stain is generally expressed in radians but it can also be expressed in degree.
Answer:
increases by a factor of 6.
Explanation:
Let us assume that the initial cross sectional area of the pipe is A m² while the initial velocity of the water is V m/s², hence the flow rate of the water is:
Initial flow rate = area * velocity = A * V = AV m³/s
The water speed doubles (2V m/s) and the cross-sectional area of the pipe triples (3A m²), hence the volume flow rate becomes:
Final flow rate = 2V * 3A = 6AV m³/s = 6 * initial flow rate
Hence, the volume flow rate of the water passing through it increases by a factor of 6.
Answer:
a) 149 kJ/mol, b) 6.11*10^-11 m^2/s ,c) 2.76*10^-16 m^2/s
Explanation:
Diffusion is governed by Arrhenius equation

I will be using R in the equation instead of k_b as the problem asks for molar activation energy
I will be using

and
°C + 273 = K
here, adjust your precision as neccessary
Since we got 2 difusion coefficients at 2 temperatures alredy, we can simply turn these into 2 linear equations to solve for a) and b) simply by taking logarithm
So:

and

You might notice that these equations have the form of

You can solve this equation system easily using calculator, and you will eventually get

After you got those 2 parameters, the rest is easy, you can just plug them all including the given temperature of 1180°C into the Arrhenius equation

And you should get D = 2.76*10^-16 m^/s as an answer for c)
Answer:
it is reducely very iloretable chance for a software engineer to give an end to this question