Answer:
The theoretical maximum specific gravity at 6.5% binder content is 2.44.
Explanation:
Given the specific gravity at 5.0 % binder content 2.495
Therefore
95 % mix + 5 % binder gives S.G. = 2.495
Where the binder is S.G. = 1, Therefore
Per 100 mass unit we have (Mx + 5)/(Vx + 5) = 2.495
(95 +5)/(Vx +5) = 2.495
2.495 × (Vx + 5) = 100
Vx =35.08 to 95
Or density of mix = Mx/Vx = 95/35.08 = 2.7081
Therefore when we have 6.5 % binder content, we get
Per 100 mass unit
93.5 Mass unit of Mx has a volume of
Mass/Density = 93.5/2.7081 = 34.526 volume units
Therefore we have
At 6.5 % binder content.
(100 mass unit)/(34.526 + 6.5) = 2.44
The theoretical maximum specific gravity at 6.5% binder content = 2.44.
Answer:
Engineering Controls. The best engineering controls to prevent heat-related illness is to make the work environment cooler and to reduce manual workload with mechanization. A variety of engineering controls can reduce workers' exposure to heat: Air conditioning, Increased general ventilation
, Cooling fans
, Local exhaust ventilation at points of high heat production or moisture, Reflective shields to redirect radiant heat
, Insulation of hot surfaces Elimination of steam leaks
, Cooled seats or benches for rest breaks
, Use of mechanical equipment to reduce manual work, Misting fans that produce a spray of fine water droplets.
Hope this helped you!
Explanation:
H is the answer
Step by step
Answer:
a) 180 m³/s
b) 213.4 kg/s
Explanation:
= 1 m²
= 100 kPa
= 180 m/s
Flow rate

Volumetric flow rate = 180 m³/s
Mass flow rate

Mass flow rate = 213.4 kg/s
Answer:
(a) 20 MHz
(b) 1.025 KW
(c) 3.33 ns
(d) 33 pF
Explanation:
(a) 20,000,000 Hz = 20 x 10^6 Hz = 20 Mega Hz = <u>20 MHz</u>
(b) 1025 W = 1.025 x 10^3 W = 1.025 Kilo W = <u>1.025 KW</u>
(c) 0.333 x 10^(-8) s = 3.33 x 10^(-9) s = 3.33 nano s = <u>3.33 ns</u>
(d) 33 x10^(-12)F = 33 pico F = <u>33 pF</u>