.0002345 I believe this is correct
Answer:
Explanation:
1)
Given data:
Initial volume of balloon = 0.8 L
Initial temperature = 12°C ( 12+273= 285 K)
Final temperature = 300°C (300+273 = 573 K)
Final volume = ?
Solution:
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 0.8 L .573 K / 285 K
V₂ = 458.4 L / 285
V₂ = 1.61 L
2)
Initial pressure = 204 kpa
Initial temperature = 29°C ( 29 + 273 = 302 K)
Final temperature = ?
Final pressure = 300 kpa
Solution:
P₁/T₁ = P₂/T₂
T₂ = T₁P₂/P₁
T₂ = 302 K . 300 kpa / 204 kpa
T₂ = 90600 K/ 204
T₂ = 444.12 K
3)
Given data:
Initial volume = 14 L
Initial pressure = 2.1 atm
Initial temperature = 100 K
Final temperature = 450 K
Final volume = ?
Final pressure = 1.2 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 2.1 atm × 14 L × 450 K / 100 K × 1.2 atm
V₂ = 13230 L / 120
V₂ = 110.25 L
Answer:
Keeps tides on the shore and away from the city
Explanation
Answer:
5
Explanation:
Firstly, we convert what we have to percentage compositions.
There are two parts in the molecule, the sulphate part and the water part.
The percentage compositions is as follows:
Sulphate- (103.74)/(103.74 + 58.55) × 100% = apprx 64%
The water part = 100 - 64 = 36%
Now, we divide the percentages by the molar masses.
For the CuSO4 molar mass is 64 + 32 + 4(16) = 160g/mol
For the H2O = 2(1) + 16 = 18g/mol
Now we divide the percentages by these masses
Sulphate = 64/160 = 0.4
Water = 36/18 = 2
The ratio is thus 0.4:2 = 1:5
Hence, there are 5 water molecules.
Answer:
v = 37.9 ml
Explanation:
Given data:
Mass of compound = 1.56 kg
Density = 41.2 g/ml
Volume of compound = ?
Solution:
First of all we will convert the mass into g.
1.56 ×1000 = 1560 g
Formula:
D=m/v
D= density
m=mass
V=volume
v = m/d
v = 1560 g / 41.2 g/ml
v = 37.9 ml