It increases the hydronium ions
make me brainliest plz
Answer:
3.925 mol.
Explanation:
- From the balanced equation:
<em>2 Na₂O₂(s) + 2 H₂O(l) → 4 NaOH(s) + O₂(g)
,</em>
It is clear that 2 moles of Na₂O₂ react with 2 moles of H₂O to produce 4 moles of NaOH and 1 mole of O₂
.
<em>Using cross multiplication:</em>
4 moles of NaOH produced with → 1 mole of O₂
.
15.7 moles of NaOH produced with → ??? mole of O₂
.
<em>∴ The no. of moles of O₂ made =</em> (1 mole)(15.7 mole)/(4 mole) = <em>3.925 mol.</em>
Answer:
2.12 moles of gas were added.
Explanation:
We can solve this problem by using<em> Avogadro's law</em>, which states that at constant temperature and pressure:
Where in this case:
We <u>input the data</u>:
- 6.13 L * n₂ = 11.3 L * 2.51 mol
As <em>4.63 moles is the final number of moles</em>, the number of moles added is:
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped! These are COMPLEX questions though! =D