The bubbles that were observed after the mixing of the two substances is one of the products of the reaction. It is the carbon dioxide that is produced. To determine the mass of this gas produced, we need to remember the Law of conservation of mass where mass cannot be created or destroyed. With this, we can say that the total mass that goes in a process should be equal to the mass that is goes out of the process no matter what the reaction is. We do as follows:
Mass of reactants = mass of products
11.00 + 44.55 = 51.04 + mass of carbon dioxide
mass of carbon dioxide = 4.51 g
Answer:
6 different frequencies
Explanation:
From energy level 1 to 2 is one frequency, from energy level 1 to 3 is one frequency and From energy level 1 to 4 is one frequency. So, we have a total of 3 frequencies for transition from energy level 1.
From energy level 2 to 3 is one frequency and from energy level 2 to 4 is one frequency. So, we have a total of 2 frequencies for transition from energy level 2.
From energy level 3 to 4 is one frequency.
So we have a total of 3 + 2 + 1 different frequencies = 6 different frequencies.
Note that the reverse process for each step produces the same frequency as the step in consideration.
<u>Answer:</u> The amount remained after 151 seconds are 0.041 moles
<u>Explanation:</u>
All the radioactive reactions follows first order kinetics.
Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process = 151 sec
= initial amount of the reactant = 0.085 moles
[A] = amount left after decay process = ?
Putting values in above equation, we get:
![4.82\times 10^{-3}=\frac{2.303}{151}\log\frac{0.085}{[A]}](https://tex.z-dn.net/?f=4.82%5Ctimes%2010%5E%7B-3%7D%3D%5Cfrac%7B2.303%7D%7B151%7D%5Clog%5Cfrac%7B0.085%7D%7B%5BA%5D%7D)
![[A]=0.041moles](https://tex.z-dn.net/?f=%5BA%5D%3D0.041moles)
Hence, the amount remained after 151 seconds are 0.041 moles
Answer:
I hope it helps..... you can stop at the full-stop