A) To calculate the charge of each coin, we must apply the expression of the Coulomb's Law:
F=K(q1xq2)/r²
F: The magnitud of the force between the charges. (F=2.0 N).
K: Constant of proporcionality of the Coulomb's Law (K=9x10^9 Nxm²/C²).
q1 and q2: Electrical charges.
r: The distance between the charges (r=1.35 m).
We have the values of F, K and r, so we can calculate q1xq2, because both<span> coins have identical charges:
</span>
q1xq2=(r²xF)/K
q1xq2=(1.35 m)²(2.0 N)/9x10^9 Nxm²/C²
q1xq2=3x10^-10 C
q1=q2=(<span>3x10^-10 C)/2
</span>Then, the charge of each coin, is:
<span>
q1=1.5x</span><span>10^-10 C
</span>q2=1.5x10^-10 C
B) <span>Would the force be classified as a force of attraction or repulsion?
</span>
It is a force of repulsion, because both coins have identical charges and both are postive. In others words, when two bodies have identical charges (positive charges or negative charges), the force is of repulsion.
Answer:
So as two objects are separated from each other, the force of gravitational attraction between them also decreases. If the separation distance between two objects is doubled (increased by a factor of 2), then the force of gravitational attraction is decreased by a factor of 4 (2 raised to the second power).
Explanation:
hope his helps
Answer:
529 Hz
Explanation:
595(343-20)/(343 + 20) = 529
Almost all rocks made of minerals, but different rocks contain different mixtures of minerals. Granite<span>, for example, consists of quartz, </span>feldspar<span>, and mica.
</span>
Answer:
The spinning of the electrons around the nucleus of an atom creates a tiny magnetic field. The electrons in most objects spin in random directions, and their magnetic forces cancel each other out.