The relationship between the frequency and wavelength of a wave is given by the equation:
v=λf, where v is the velocity of the wave, λ is the wavelength and f is the frequency.
If we divide the equation by f we get:
λ=v/f
From here we see that the wavelength and frequency are inversely proportional. So as the frequency increases the wavelength decreases.
So the second statement is true: As the frequency of a wave increases, the shorter the wavelength is.
Answer:
Explained
Explanation:
Newton would resort to the classical mechanics and say that the momentum of the particle that is moving with a constant velocity will be given by: momentum = mass x velocity
this approach will highlight the particle nature and will not be relativistic.
De-Broglie will say that the momentum of the particle is related to its associated matter wave and the relation between them is given by:

where \lambda = wavelength of the matter wave associated to the particle, h = planck's constant
and
thus, this highlights the wave nature of the particle and is also relativistic.
Explanation:
It's displacement would be negative
displacement is a vector quantity.
'Backwards', we can assume, would be negative.
and forwards, positive. So going backwards would mean a negative displacement.
It woul be 0 because it is not moving. It is staying at a constant rate.