Let's use the mirror equation to solve the problem:

where f is the focal length of the mirror,

the distance of the object from the mirror, and

the distance of the image from the mirror.
For a concave mirror, for the sign convention f is considered to be positive. So we can solve the equation for

by using the numbers given in the text of the problem:



Where the negative sign means that the image is virtual, so it is located behind the mirror, at 8.6 cm from the center of the mirror.
Answer:
Explanation:
Given

mass of core
Average specific heat 
And rate of increase of temperature =
Now
P=

Thus ![\frac{\mathrm{d}T}{\mathrm{d} t}=[tex]\frac{1.60\times 10^5\times 0.3349}{150\times 10^6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7DT%7D%7B%5Cmathrm%7Bd%7D%20t%7D%3D%5Btex%5D%5Cfrac%7B1.60%5Ctimes%2010%5E5%5Ctimes%200.3349%7D%7B150%5Ctimes%2010%5E6%7D)

Answer:
hehe
Explanation:
I dont know because I am a noob ant study
Answer:
x = 0.974 L
Explanation:
given,
length of inclination of log = 30°
mass of log = 200 Kg
rock is located at = 0.6 L
L is the length of the log
mass of engineer = 53.5 Kg
let x be the distance from left at which log is horizontal.
For log to be horizontal system should be in equilibrium
∑ M = 0
mass of the log will be concentrated at the center
distance of rock from CM of log = 0.1 L
now,
∑ M = 0



x = 0.974 L
hence, distance of the engineer from the left side is equal to x = 0.974 L
Answer:
W = 9.6 N
Explanation:
Given that,
Area on 1 foot, A = 0.6 m²
Pressure, P = 16 Pa
The pressure is given by force acting per unit area. So,

So, the required weight is 9.6 N.