1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
statuscvo [17]
2 years ago
12

Can someone please answer this for me

Physics
1 answer:
UNO [17]2 years ago
5 0

C

Because in my opinion they do bending of a light wave as it passes at an angle from one medium to another.

You might be interested in
If the person drops box from 3.8 m how much energy is transferred from potential energy to kinetic energy
kotykmax [81]

Answer:

Kinetic energy

When work is done the energy is transferred from one type to another. This transferred energy may appear as kinetic energy.

For example, when you pedal your bicycle so that its speed increases, you are doing work to transfer chemical energy from your muscles to the kinetic energy of the bicycle.

Kinetic energy is the energy an object possesses by virtue of its movement. The amount of kinetic energy possessed by a moving object depends on the mass of the object and its speed. The greater the mass and the speed of the object the greater its kinetic energy.

The kinetic energy Ek of an object of mass m at a speed v is given by the relationship

{E_k} = \frac{1}{2}m{v^2}

m is the mass of the object in kilograms ( kg) and v is the speed of the object in metres per second ( m\,s^{-1}).

Explanation:

When work is done on an object it may also lead to energy being transferred to the object in the form of gravitational potential energy of the object.

Gravitational potential energy is the energy an object has by virtue of its position above the surface of the Earth. When an object is lifted, work is done. When work is done in raising the height of an object, energy is transferred as a gain in the gravitational potential energy of the object.

For example, suppose you lift a suitcase of mass m through a height h. The weight W of the suit case is a downward force of size mg. In lifting the suitcase, you would have to pull upwards on it with a force equal in size to its weight, mg.

Two suitcases. One has a green force arrow pointing up labelled F and a purple force arrow pointing down labelled 'Weight = mg'. The other case is raised by a height labelled h.

Suitcases with forces and height labelled

When this force (equal to the weight mg, but upwards) is applied to the suitcase over the distance h:

Work\,done=force\,\times\,distance\,upwards=mg\,\times\,h

This energy is transferred to potential energy when raising the object through a known height.

Energy = mass \times gravitational\,field\,strength \times height

E = m \times g \times h

This is the relationship used to calculate gravitational potential energy.

{E_p} = mgh

where m is the mass of the object in kilograms (kg), g is the gravitational field strength, (for positions near the surface of the Earth g = 9∙8 newtons per kilogram ( N kg ^{-1} and h is the height above the surface of the Earth in metres ( m).

8 0
3 years ago
A student pushes a 0.2 kg box against a spring causing the spring to compress 0.15 m. When the spring is released, it will launc
german

Answer:

The maximum height the box will reach is 1.72 m

Explanation:

F = k·x

Where

F = Force of the spring

k = The spring constant = 300 N/m

x  = Spring compression or stretch = 0.15 m

Therefore the force, F of the spring = 300 N/m×0.15 m = 45 N

Mass of box = 0.2 kg

Work, W, done by the spring = \frac{1}{2} kx^2 and the kinetic energy gained by the box is given by KE = \frac{1}{2} mv^2

Since work done by the spring = kinetic energy gained by the box we have

\frac{1}{2} mv^2 =  \frac{1}{2} kx^2  therefore we have v = \sqrt{\frac{kx^2}{m} } = x\sqrt{\frac{k}{m} } = 0.15\sqrt{\frac{300}{0.2} } = 5.81 m/s

Therefore the maximum height is given by

v² = 2·g·h or h = \frac{v^2}{2g} = \frac{5.81^{2} }{2*9.81} = 1.72 m

6 0
3 years ago
What is my name if it starts with a then m then a then r then y?
Ierofanga [76]

Answer:

Amary

Explanation:

?

8 0
3 years ago
Read 2 more answers
Who was the creator of sports
Elden [556K]
The first Olympic Games were in Greece
8 0
3 years ago
The diagram below shows a 5.00-kilogram block
bixtya [17]

The name and strength of the force holding the block up is 50 N upward - Normal force.

The given parameters:

  • <em>Mass of the block, m = 5 kg</em>

The weight of the block acting downwards due to gravity is calculated as follows;

W = mg

where;

  • <em>g is acceleration due to gravity = 10 m/s²</em>

W = 5 x 10

W = 50 N <em>(</em><em>downwards</em><em>)</em>

Since the block is at rest, an a force equal to the weight of the block must be acting upwards. This force is known as normal reaction.

Fₙ = 50 N <em>(</em><em>upwards</em><em>)</em>

Thus, the name and strength of the force holding the block up is 50 N upward - Normal force.

Learn more about Normal force here: brainly.com/question/14486416

4 0
2 years ago
Read 2 more answers
Other questions:
  • A solution is prepared by dissolving 49.3 g of KBr in enough water to form 473 mL of solution. Calculate the mass % of KBr in th
    5·1 answer
  • WILL GIVE BRAINLIEST AND 60 POINTS!
    13·1 answer
  • Which statement is true about the element shown here? A) This element tends to gain electrons to become stable. B) This element
    14·2 answers
  • A particular balloon can be stretched to a maximum surface area of 1257 cm2. The balloon is filled with 3.1 L of helium gas at a
    5·1 answer
  • When can thermal energy in a system move from lower to higher temperatures?
    6·1 answer
  • HELP ME PLZ !!!!!!!!!!!!!!!!!!!!
    11·2 answers
  • Un vehiculo se desplaza con movimiento rectilio uniforme. Sabiendo que recorre 90 km en 3 horas. Averiguo la velocidad en m/s.
    11·1 answer
  • A student walks 3 north and 4 m west. The magnitude of the resultant displacement for the student is
    6·1 answer
  • When magma cools quickly, what kind of texture or
    8·1 answer
  • Kathy 82 kg performer standing on a diving board at the carnival dive straight down into a small pool of water. Just before stri
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!