1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
5

A ball is shot from the ground into the air. At a height of 9.1 m, the velocity is observed to be v = (7.6 + 6.7 ) m/s, with hor

izontal and upward.
(a) To what maximum height does the ball rise?

(b) What total horizontal distance does the ball travel?

(c) What is the magnitude of the ball's velocity just before it hits the gound?

(d)What is the direction of the ball's velocity just before it hits the ground?
Physics
1 answer:
oee [108]3 years ago
8 0
<h2>Answer:</h2>

(a) 11.34m

(b) 22.89m

(c) 16.87m/s

(d) 63.2°

<h2>Explanation:</h2>

Given;

v = (7.6 i + 6.7 j) m/s   [where i is horizontal and j is upward]

Since this is a projectile motion, the horizontal and vertical components of the motion are considered;

Using one of the equations of motion;

v² = u² + 2as            ------------------------(i)

Where;

v = final velocity

u = initial velocity

a = acceleration

s = displacement

<em>Resolving equation (i) into the horizontal component</em>

vₓ² = uₓ² + 2aₓsₓ        --------------------(ii)

Where;

vₓ = final velocity of the horizontal motion

uₓ = initial velocity of the horizontal motion

aₓ = acceleration of the horizontal motion

sₓ = horizontal displacement

In the horizontal motion, velocity is constant. i.e

vₓ = uₓ

Therefore, acceleration, aₓ = 0

Substitute these values into equation (ii), we have

=> vₓ² = uₓ² + 2(0)sₓ

=> vₓ² = uₓ²

=> vₓ = uₓ

From the given equation;

v = (7.6 i + 6.7 j) m/s;

Where;

i = horizontal component of the velocity

j = vertical component of the velocity

=> vₓ = uₓ = 7.6 m/s

<em>Resolving equation (i) into the vertical component</em>

v^{2}_{y}= u^{2} _{y} + 2a_{y}s_{y}      --------------------(iii)

Where;

v_{y} = final velocity of the vertical motion

u_{y} = initial velocity of the vertical motion

a_{y} = acceleration of the vertical motion = g

s_{y} = vertical displacement or height

In the vertical motion, acceleration is constant and is equal to the acceleration due to gravity, g = 10m/s². i.e

a_{y} = ±g

Substitute these values into equation (iii), we have

=> v^{2}_{y} = u^{2} _{y} + 2a_{y}s_{y}

=> v^{2}_{y} = u^{2} _{y} + 2gs_{y}       ----------------------(iv)

From the question,

at a height 9.1m, v = (7.6 i + 6.7 j) m/s;

Where;

i = horizontal component of the velocity

j = vertical component of the velocity

=> s_{y} = 9.1, v_{y} = 6.7m/s and g = -10m/s² (since the ball moves upwards against gravity)

Substitute these values into equation (iv) to calculate u_{y} as follows;

6.7² = u^{2} _{y} + 2(-10) x 9.1

44.89 = u^{2} _{y}  - 182

u^{2} _{y}  = 44.89 +  182

u^{2} _{y}  = 226.89

Solve for u_{y};

u_{y} = \sqrt{226.89}

u_{y} = 15.06m/s

(a) Using equation (iv);

v^{2}_{y} = u^{2} _{y} + 2gs_{y}

At maximum height, v_{y} = 0

g = -10m/s²

Substitute these values and u_{y} = 15.06m/s into the equation as follows;

0 = (15.06)² + 2(-10)s_{y}

0 = 226.80  - 20 s_{y}

226.80  = 20 s_{y}

s_{y} = 226.80 / 20

s_{y} = 11.34 m

Therefore, the maximum height that the ball rises is 11.34m

(b) The horizontal distance sₓ that the ball travels is given by the range formula of a projectile as follows;

sₓ = 2 x u_{y} x uₓ / g

sₓ = 2 x 15.06 x 7.6 / 10

sₓ = 2 x 15.06 x 7.6 / 10

sₓ = 22.89 m

Therefore, the total horizontal distance that the ball travels is 22.89m

(c) The magnitude of the ball's velocity before it hits the ground is the vector sum of the initial velocities of its horizontal and vertical motion and is given by;

|v| = \sqrt{(u_{x} ^{2} ) + (u_{y} ^{2} )}

|v| =  \sqrt{7.6^{2} + 15.06^{2} }

|v| = \sqrt{57.76 + 226.80}

|v| = \sqrt{284.56}

|v| = 16.87 m/s

Therefore, the magnitude of the ball's velocity before it hits ground is 16.87m/s

(d) The direction (θ) of the ball's velocity just before it hits the ground is;

θ = tan⁻¹ (u_{y} / uₓ)

θ = tan⁻¹ (15.06 / 7.6)

θ = tan⁻¹ (1.98)

θ = 63.2°

Therefore, the direction of the ball's velocity before it hits ground is 63.2°

You might be interested in
Two particles, each of charge Q, are fixed at opposite corners of a square that lies in the plane of the page. A positive test c
amid [387]

Answer:

The magnitude of the net force is √2F.

Explanation:

Since the two particles have the same charge Q, they exert the same force on the test charge; both attractive or repulsive. So, the angle between the two forces is 90° in any case. Now, as we know the magnitude of these forces and that they form a 90° angle, we can use the Pythagorean Theorem to calculate the magnitude of the resultant net force:

F_N=\sqrt{F^{2}+F^{2}}\\\\F_N=\sqrt{2F^{2}}\\\\F_N=\sqrt{2}F

Then, it means that the net force acting on the test charge has a magnitude of √2F.

7 0
3 years ago
Need an answer pls!!!<br><br><br><br><br><br> will give brainliest
solmaris [256]

Answer:

i think your answer is C

Explanation:

8 0
2 years ago
Read 2 more answers
Check all choices below that are correct. Increasing the frequency increases the current. Changing the frequency does not affect
Annette [7]

Answer:

the experyoeyv

Explanation:

3 0
3 years ago
Read 2 more answers
A force of 10N is required to stretch a spring from 20cm to 25cm. What is the spring constant in N/m2 Be careful of unit
kupik [55]

Answer:

C) 40 N/m

Explanation:

If we ASSUME that the spring is un-stretched at the zero cm position

k = F/Δx = 10/0.25 = 40 N/m

5 0
2 years ago
Kali left school and traveled toward her friend's house at an average speed of 40 km/h. Matt left one hour later and traveled in
zlopas [31]

Answer:

t = 5 hr

Explanation:

Let kali moves toward east with velocity= V₁= 40 km/ h

Mat moves toward west with velocity = V₂= 50 km/hr

As Klai left one hour earlier = t₁= 1 hr

distance traveled in 1st hour = s₁ = v * t = 40 * 1 = 40 km

Remaining distance = 400 - 40 = 360 km

As they move in the opposite directions:

Relative speed= 40 + 50 = 90 km/ h

s = v * t

⇒ t = s / v

⇒ t₂ = 360 / 90

⇒ t₂ = 4 hr

Total time = t = t₁ + t₂

t = 1 hr + 4 hr

t = 5 hr

5 0
3 years ago
Read 2 more answers
Other questions:
  • two springs have different spring constants how could you identify the spring with the greater spring constant value
    7·1 answer
  • How does sound travel through a medium?
    7·2 answers
  • In thinking of an inductor as a circuit element, it is helpful to consider its limiting behavior at high and low frequencies. At
    12·1 answer
  • suppose that during any period of 1/4 second there is one instant at which the crests or troughs of component waves are exactly
    7·2 answers
  • A material that provides resistance to the flow of electric current is called a(an)
    13·2 answers
  • Suppose a skydiver jumps out of a plane at 15,000 meters above the ground. It takes him 2.0 seconds to pull the cord to deploy t
    8·1 answer
  • Sasha lifts a couch 8.2 meters from the ground floor of her house to the attic. If the couch has a mass of 120 kg, what is the g
    13·2 answers
  • Light of wavelength 505 nm passes through a single slit of width 4.32 x 10-5 m. At what angle does the first interference minimu
    5·1 answer
  • What occurs when the moon blocks the view of the sun
    7·1 answer
  • Nbel! You’re okay! What happened to you?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!