1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
5

A ball is shot from the ground into the air. At a height of 9.1 m, the velocity is observed to be v = (7.6 + 6.7 ) m/s, with hor

izontal and upward.
(a) To what maximum height does the ball rise?

(b) What total horizontal distance does the ball travel?

(c) What is the magnitude of the ball's velocity just before it hits the gound?

(d)What is the direction of the ball's velocity just before it hits the ground?
Physics
1 answer:
oee [108]3 years ago
8 0
<h2>Answer:</h2>

(a) 11.34m

(b) 22.89m

(c) 16.87m/s

(d) 63.2°

<h2>Explanation:</h2>

Given;

v = (7.6 i + 6.7 j) m/s   [where i is horizontal and j is upward]

Since this is a projectile motion, the horizontal and vertical components of the motion are considered;

Using one of the equations of motion;

v² = u² + 2as            ------------------------(i)

Where;

v = final velocity

u = initial velocity

a = acceleration

s = displacement

<em>Resolving equation (i) into the horizontal component</em>

vₓ² = uₓ² + 2aₓsₓ        --------------------(ii)

Where;

vₓ = final velocity of the horizontal motion

uₓ = initial velocity of the horizontal motion

aₓ = acceleration of the horizontal motion

sₓ = horizontal displacement

In the horizontal motion, velocity is constant. i.e

vₓ = uₓ

Therefore, acceleration, aₓ = 0

Substitute these values into equation (ii), we have

=> vₓ² = uₓ² + 2(0)sₓ

=> vₓ² = uₓ²

=> vₓ = uₓ

From the given equation;

v = (7.6 i + 6.7 j) m/s;

Where;

i = horizontal component of the velocity

j = vertical component of the velocity

=> vₓ = uₓ = 7.6 m/s

<em>Resolving equation (i) into the vertical component</em>

v^{2}_{y}= u^{2} _{y} + 2a_{y}s_{y}      --------------------(iii)

Where;

v_{y} = final velocity of the vertical motion

u_{y} = initial velocity of the vertical motion

a_{y} = acceleration of the vertical motion = g

s_{y} = vertical displacement or height

In the vertical motion, acceleration is constant and is equal to the acceleration due to gravity, g = 10m/s². i.e

a_{y} = ±g

Substitute these values into equation (iii), we have

=> v^{2}_{y} = u^{2} _{y} + 2a_{y}s_{y}

=> v^{2}_{y} = u^{2} _{y} + 2gs_{y}       ----------------------(iv)

From the question,

at a height 9.1m, v = (7.6 i + 6.7 j) m/s;

Where;

i = horizontal component of the velocity

j = vertical component of the velocity

=> s_{y} = 9.1, v_{y} = 6.7m/s and g = -10m/s² (since the ball moves upwards against gravity)

Substitute these values into equation (iv) to calculate u_{y} as follows;

6.7² = u^{2} _{y} + 2(-10) x 9.1

44.89 = u^{2} _{y}  - 182

u^{2} _{y}  = 44.89 +  182

u^{2} _{y}  = 226.89

Solve for u_{y};

u_{y} = \sqrt{226.89}

u_{y} = 15.06m/s

(a) Using equation (iv);

v^{2}_{y} = u^{2} _{y} + 2gs_{y}

At maximum height, v_{y} = 0

g = -10m/s²

Substitute these values and u_{y} = 15.06m/s into the equation as follows;

0 = (15.06)² + 2(-10)s_{y}

0 = 226.80  - 20 s_{y}

226.80  = 20 s_{y}

s_{y} = 226.80 / 20

s_{y} = 11.34 m

Therefore, the maximum height that the ball rises is 11.34m

(b) The horizontal distance sₓ that the ball travels is given by the range formula of a projectile as follows;

sₓ = 2 x u_{y} x uₓ / g

sₓ = 2 x 15.06 x 7.6 / 10

sₓ = 2 x 15.06 x 7.6 / 10

sₓ = 22.89 m

Therefore, the total horizontal distance that the ball travels is 22.89m

(c) The magnitude of the ball's velocity before it hits the ground is the vector sum of the initial velocities of its horizontal and vertical motion and is given by;

|v| = \sqrt{(u_{x} ^{2} ) + (u_{y} ^{2} )}

|v| =  \sqrt{7.6^{2} + 15.06^{2} }

|v| = \sqrt{57.76 + 226.80}

|v| = \sqrt{284.56}

|v| = 16.87 m/s

Therefore, the magnitude of the ball's velocity before it hits ground is 16.87m/s

(d) The direction (θ) of the ball's velocity just before it hits the ground is;

θ = tan⁻¹ (u_{y} / uₓ)

θ = tan⁻¹ (15.06 / 7.6)

θ = tan⁻¹ (1.98)

θ = 63.2°

Therefore, the direction of the ball's velocity before it hits ground is 63.2°

You might be interested in
An experimental rocket designed to land upright falls freely from a height of 2.59 102 m, starting at rest. At a height of 86.9
aleksandr82 [10.1K]

Answer:

The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²

The rocket's motion for analysis sake is divided into two phases.

Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m

Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.

Explanation:

The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.

The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.

The detailed step by step solution to the problems can be found in the attachment below.

Thank you and I hope this solution is helpful to you. Good luck.

5 0
3 years ago
A cheerleader lifts his 79.4 kg partner straight up off the ground a distance of 0.945 m before releasing her. the acceleration
Oksi-84 [34.3K]
To find out how much work he has done, we must first calculate force using the force formula (F= Mass*Acceleration). In this case, mass is 79.4 and acceleration is the gravitational constant of 9.8m/s, plugging this into the formula we find that force is 778.12Newtons. Next, we need to multiply force by the distance to get the amount of energy used to lift his partner once. Which is 778.12 * .945 = 735.32. Finally, we need to multiply 735.32 by the number of times he lifts his partner, 33, to get 735.32 * 33 to find that the energy he has expended 24,265.56 Joules of energy.
5 0
3 years ago
IF YOU MOVE 50 METERS IN TO SECONDS,
Yanka [14]
You can use photo math for This
5 0
2 years ago
Write a simple rule that will tell a person how many water molecule will be lost while putting monosaccharides together to form
belka [17]
<span>For hydrolysis to monosaccharides, one molecule of a disaccharide needs only one molecule of water. C12H22O11 (sucrose) + H2O = C6H12O6 (glucose) + C6H12O6 (fructose) Structurally, a disaccharide molecule may be viewed as a product formed by the condensation of two molecules of monosaccharides with the elimination of a water molecule. So, only one H2O molecule is needed for the reverse process.</span>
3 0
3 years ago
A power station with an efficiency e generates W watts of electric power and dissipates D J of heat energy each second to the co
Andrews [41]

Answer: 13.94 tons/s

Explanation:

On adding heat energy to a substance, the temperature would be changed by a particular amount. This relationship between heat energy and temperature is often different for each material. The specific heat, is a value that describes how they relate.

Heat energy = mass flow rate * specific heat * Δ T

Q = MC (ΔΦ)

Heat energy, Q= 3.5*10^8J

Mass flow rate, M= ?

Specific heat, C= 4184j/KgC

Change in temperature, ΔΦ= 6°C

M = Q/CΔΦ

M = (3.5*10^8)/4184*6

M = 13942kg/s

M = 13.94 tons/s

3 0
3 years ago
Other questions:
  • What is an asterism? Can you name an example?
    13·1 answer
  • Why is the work output of a machine never equal to the work input? A. Some work input is used to overcome friction. B. Input dis
    5·2 answers
  • When is L larger than XL
    10·2 answers
  • A ______ is a massive object with gravitational effect so strong that even light cannot escape it. A)black hole
    8·2 answers
  • PART ONE
    5·1 answer
  • A diver springs upward from a board that is 3.90 m above the water. At the instant she contacts the water her speed is 13.2 m/s
    11·1 answer
  • Calcula la energía cinética der un vehículo de 1860kg 1ue se mueve a 50km/h​
    13·1 answer
  • You connect three resistors with resistances R, 2R, and 3R in parallel. The equivalent resistance of the three resistors will ha
    9·1 answer
  • A fishing pole is an example of a compound machine. What simple machines are used to make up this compound machine?
    11·2 answers
  • (a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500-μC charge and flies due west at a spee
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!