1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Salsk061 [2.6K]
3 years ago
5

A ball is shot from the ground into the air. At a height of 9.1 m, the velocity is observed to be v = (7.6 + 6.7 ) m/s, with hor

izontal and upward.
(a) To what maximum height does the ball rise?

(b) What total horizontal distance does the ball travel?

(c) What is the magnitude of the ball's velocity just before it hits the gound?

(d)What is the direction of the ball's velocity just before it hits the ground?
Physics
1 answer:
oee [108]3 years ago
8 0
<h2>Answer:</h2>

(a) 11.34m

(b) 22.89m

(c) 16.87m/s

(d) 63.2°

<h2>Explanation:</h2>

Given;

v = (7.6 i + 6.7 j) m/s   [where i is horizontal and j is upward]

Since this is a projectile motion, the horizontal and vertical components of the motion are considered;

Using one of the equations of motion;

v² = u² + 2as            ------------------------(i)

Where;

v = final velocity

u = initial velocity

a = acceleration

s = displacement

<em>Resolving equation (i) into the horizontal component</em>

vₓ² = uₓ² + 2aₓsₓ        --------------------(ii)

Where;

vₓ = final velocity of the horizontal motion

uₓ = initial velocity of the horizontal motion

aₓ = acceleration of the horizontal motion

sₓ = horizontal displacement

In the horizontal motion, velocity is constant. i.e

vₓ = uₓ

Therefore, acceleration, aₓ = 0

Substitute these values into equation (ii), we have

=> vₓ² = uₓ² + 2(0)sₓ

=> vₓ² = uₓ²

=> vₓ = uₓ

From the given equation;

v = (7.6 i + 6.7 j) m/s;

Where;

i = horizontal component of the velocity

j = vertical component of the velocity

=> vₓ = uₓ = 7.6 m/s

<em>Resolving equation (i) into the vertical component</em>

v^{2}_{y}= u^{2} _{y} + 2a_{y}s_{y}      --------------------(iii)

Where;

v_{y} = final velocity of the vertical motion

u_{y} = initial velocity of the vertical motion

a_{y} = acceleration of the vertical motion = g

s_{y} = vertical displacement or height

In the vertical motion, acceleration is constant and is equal to the acceleration due to gravity, g = 10m/s². i.e

a_{y} = ±g

Substitute these values into equation (iii), we have

=> v^{2}_{y} = u^{2} _{y} + 2a_{y}s_{y}

=> v^{2}_{y} = u^{2} _{y} + 2gs_{y}       ----------------------(iv)

From the question,

at a height 9.1m, v = (7.6 i + 6.7 j) m/s;

Where;

i = horizontal component of the velocity

j = vertical component of the velocity

=> s_{y} = 9.1, v_{y} = 6.7m/s and g = -10m/s² (since the ball moves upwards against gravity)

Substitute these values into equation (iv) to calculate u_{y} as follows;

6.7² = u^{2} _{y} + 2(-10) x 9.1

44.89 = u^{2} _{y}  - 182

u^{2} _{y}  = 44.89 +  182

u^{2} _{y}  = 226.89

Solve for u_{y};

u_{y} = \sqrt{226.89}

u_{y} = 15.06m/s

(a) Using equation (iv);

v^{2}_{y} = u^{2} _{y} + 2gs_{y}

At maximum height, v_{y} = 0

g = -10m/s²

Substitute these values and u_{y} = 15.06m/s into the equation as follows;

0 = (15.06)² + 2(-10)s_{y}

0 = 226.80  - 20 s_{y}

226.80  = 20 s_{y}

s_{y} = 226.80 / 20

s_{y} = 11.34 m

Therefore, the maximum height that the ball rises is 11.34m

(b) The horizontal distance sₓ that the ball travels is given by the range formula of a projectile as follows;

sₓ = 2 x u_{y} x uₓ / g

sₓ = 2 x 15.06 x 7.6 / 10

sₓ = 2 x 15.06 x 7.6 / 10

sₓ = 22.89 m

Therefore, the total horizontal distance that the ball travels is 22.89m

(c) The magnitude of the ball's velocity before it hits the ground is the vector sum of the initial velocities of its horizontal and vertical motion and is given by;

|v| = \sqrt{(u_{x} ^{2} ) + (u_{y} ^{2} )}

|v| =  \sqrt{7.6^{2} + 15.06^{2} }

|v| = \sqrt{57.76 + 226.80}

|v| = \sqrt{284.56}

|v| = 16.87 m/s

Therefore, the magnitude of the ball's velocity before it hits ground is 16.87m/s

(d) The direction (θ) of the ball's velocity just before it hits the ground is;

θ = tan⁻¹ (u_{y} / uₓ)

θ = tan⁻¹ (15.06 / 7.6)

θ = tan⁻¹ (1.98)

θ = 63.2°

Therefore, the direction of the ball's velocity before it hits ground is 63.2°

You might be interested in
A ball of mass m, attached to the end of a horizontal cord, is rotated in a circle of radius r on a frictionless horizontal surf
kirza4 [7]

Answer:v=\sqrt{\frac{FL}{m}}

Explanation:

Given

Ball of mass m

maximum Bearable Tension in string is F

Let length of the cord be L m and moving at a speed of v m/s

Here Tension will Provide Centripetal Force

T=Centripetal Force

F=T=\frac{mv^2}{L}

v=\sqrt{\frac{FL}{m}}

8 0
3 years ago
An object releasing energy is evidence of which type of chemical change?
Ray Of Light [21]
Exothermic is the answer to your question
8 0
2 years ago
Which of the following statements are true? Positively charged objects attract other positively charged objects. Negatively char
butalik [34]
The statement that is true is that positively charged objects attract negatively charged objects. This is due to a law that states 'like forces attract while unlike forces repel. This same concept applies to magnetism. If you put two similar poles together, for example; if you place two south poles together. You feel a separating force between the two poles. But if you place two opposite poles together they attract each other. Hope i helped. <span />
7 0
2 years ago
Read 2 more answers
The speed of sound in air is approximately 340 m/s. The speed of light in air is approximately 3 x 108 m/s. If 10 seconds elapse
olya-2409 [2.1K]

Answer:

3400 m

Explanation:

Both lightning and thunder happen at the same time but one is faster than the other. The distance traveled by a sound can be calculated from its speed such that;

 speed = distance/time, hence, distance = speed x time.

<em>For a thunder with 340 m/s speed and 10 seconds away from lightning, the distance between the thunder and the lightning can be calculated as</em>;

distance = 340 m/s x 10 s = 3400 m

     

3 0
3 years ago
A large power plant generates electricity at 12.0 kV. Its old transformer once converted the voltage to 385 kV. The secondary of
enot [183]

Answer:

a) In the new transformer there are 42 turns in the secondary per turn in the primary, while in the old transformer there were 32 turns per turn in the primary.

b) The new output is 86% of the old output

c) The losses in the new line are 74% the losses in the old line.

Explanation:

a) To relate the turns of primary and secondary to the ratio of voltage we have this expression:

\frac{n_1}{n_2}=\frac{V_1}{V_2}

In the old transformer the ratio of voltages was:

\frac{n_1}{n_2}=\frac{V_1}{V_2}=\frac{12}{385} =0.03117\\\\n_2=n_1/0.03117=32.1n_1

In the new transformer the ratio of voltages is:

\frac{n_1}{n_2}=\frac{V_1}{V_2}=\frac{12}{500} =0.024\\\\n_2=n_1/0.24=41.7n_1

In the new transformer there are 42 turns in the secondary per turn in the primary, while in the old transformer there were 32 turns per turn in the primary.

b) The new current ratio is

\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{12}{500}= 0.024\\\\I_2=0.024I_1

If the old current output was 425 kV, the ratio of current was:

\frac{V_1}{V_2}=\frac{I_2}{I_1}=\frac{12}{425}= 0.028\\\\I_2=0.028I_1

Then, the ratio of the new output over the old output is:

\frac{I_{2new}}{I_{2old}} =\frac{0.024\cdot I_1}{0.028\cdot I_1}= 0.86

The new output is 86% of the old output (smaller output currents lower the losses on the transmission line).

c) The power loss is expressed as:

P_L=I^2\cdot R

Then, the ratio of losses is (R is constant for both power losses):

\frac{P_n}{P_o} =\frac{I_n^2R}{I_o^2R} =(\frac{I_n}{I_o} )^2=0.86^2=0.74

The losses in the new line are 74% the losses in the old line.

7 0
3 years ago
Other questions:
  • A plane flying horizontally at a speed of 50 m/s and at an elevation of 160 m drops a package, and 2.0 s later it drops a second
    10·1 answer
  • Which one of the following weight management plans is the most effective
    14·2 answers
  • Acid mine drainage is:
    10·1 answer
  • Two ice skaters stand facing each other at rest on a frozen pond. They push off against one another and the 48 kg skater acquire
    10·2 answers
  • A tube closed at one end is used to determine the speed of sound in air. The resonances occur every 32 cm when a 530-Hz tuning f
    15·1 answer
  • What is the volume of a storage tank which will hold 3200kg of petrol?
    5·1 answer
  • A 2.00 kg rock is dropped from the top of a 30.0 m high building. Calculate the ball’s momentum at the time that it strikes the
    10·1 answer
  • If a car increases its velocity from +6 m/s to +30 m/s in 6 seconds, its acceleration in m/s2 is__________.
    7·1 answer
  • Based on the Law of Conservation of Energy, which of the below is true?(1 point)
    15·1 answer
  • What is (a) the wavenumber and (b) the wavelength of the radiation used by an fm radio transmitter broadcasting at 92. 0 mhz?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!