Answer: The five general characteristics of the nearest stars are the brightness, color, surface temperature, size, and mass.
Explanation:
The mass of a star can be described as being measured with our sun at 1 solar mass. One star can equal the size of our sun. There is one star named, Rigel, that is bigger than the Earths sun. Each star will vary in its density.
The size of the star, as stated above, can be the size of our sun and sometimes larger. The size is measured by solar radii.
Stars vary in their temp. They range anywhere from -273.15 degrees Celsius to 50,000 K. The temp is based on the Kelvin scale.
The stars brightness are always based on luminosity and magnitude.
The stars colors will vary and is based on the temperature of the surface of the star. Some stars are red in color, white in color, and some even have a bluish color.
Answer:
0.1 m
Explanation:
The closest distance the electrodes used in an NCV test in oerder to measure
the voltage change as a response to the stimulus is 0.1 m.
This is because the shortest observable time period is not less than the action-potential time response of 1 mili second the length traveled by the sensation during this time is 1 m sec x 100 m / s =0.1 m, which is the shortest distance the electrodes could be positioned on the nerve.
highest energy level to the ground state.
Explanation:
The transition from the highest energy level to the ground state.
An electron has a discrete amount of energy accrued to it in any energy level it belongs to.
Electrons can transition between one energy level or the other.
- When electrons change state, they either release or absorb energy.
- When an atom absorbs energy, they move from their ground to final state which is consistent with the energy of the final state.
- When electrons release energy, they move from excited state to their ground state.
- Electrons will release the greatest amount of energy when they move from the highest energy level to the ground state.
Learn more:
Neil Bohr brainly.com/question/4986277
#learnwithBrainly
Hi there!
Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.
We also know there was work done on the ball by air resistance that decreased the ball's total energy.
Let's do a summation using the equations:

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

And:

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.
Therefore:

Solving for the work done by air resistance:

