Answer:
P-waves travel through liquids and solid while S-waves only travel through solids.
Explanation:
Scientists are able to use the fact that P-waves travel through both solids and liquids and waves travel through only solids to determine what makes the different layers of the Earth.
Answer:
The distance traveled by the balloon is 10.77 m
Explanation:
velocity of the ball,
= 2 m/s south
velocity of the air,
= 5 m/s west
To determine the distance the balloon will travel after 2 seconds, first determine the resultant velocity of the balloon.
| 2m/s
|
|
↓
5m/s ←------------------
the two velocities forms a right angled triangle and the resultant will be the hypotenuses side of the triangle.
R² = 5² + 2²
R² = 29
R = √29
R = 5.385 m/s
The distance traveled by the balloon is calculated as;
d = R x t
where;
t is time of the motion = 2 seconds
d = 5.385 x 2
d = 10.77 m
Therefore, the distance traveled by the balloon is 10.77 m.
Force is (mass × acceleration) measured in Newton
Pressure is the 'force' per unit area measured in Newton/m^2 (pascal)
Answer:
1.2 A
Explanation:
From the diagram attached, The three resistors are parallel because the each ends of the resistors are connected together. Since they are in parallel, the voltage across each resistor is the same. The voltage source connected in parallel to the resistors is 60 V. Therefore the voltage across the 50 Ω resistor is 60 V. Using ohm law:
Voltage (V) = Current (I) × Resistance (R)
V = IR
I = V/R
I = 60 V/ 50 Ω
I = 1.2 A
The current in the 50 Ω resistor is 1.2 A
The force of attraction between two objects can be illustrated using Newton's Law of Universal Gravitation.
The relation between the different parameters is shown in the attached image.
Now, from the relation, we can deduce that the force between the two objects is directly proportional to the masses of the two objects.
This means that, if the mass of one object is doubled, then the force between the two objects will also be doubled.