Answer:
The net power needed to change the speed of the vehicle is 275,000 W
Explanation:
Given;
mass of the sport vehicle, m = 1600 kg
initial velocity of the vehicle, u = 15 m/s
final velocity of the vehicle, v = 40 m/s
time of motion, t = 4 s
The force needed to change the speed of the sport vehicle;

The net power needed to change the speed of the vehicle is calculated as;
![P_{net} = \frac{1}{2} F[u + v]\\\\P_{net} = \frac{1}{2} \times 10,000[15 + 40]\\\\P_{net} = 275,000 \ W](https://tex.z-dn.net/?f=P_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20F%5Bu%20%2B%20v%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%2010%2C000%5B15%20%2B%2040%5D%5C%5C%5C%5CP_%7Bnet%7D%20%3D%20275%2C000%20%5C%20W)
Answer:
Gas like oxygen, nitrogen etc
Ball 4 because the higher the elevation is the greater the potential energy it has
Answer:
The work done by the wind as the boat moves 130 ft is (rounded) W= 31,550 ft-lb.
Explanation:
F= 300 lb < -54º
Fsouth= 300 lb * cos(36º)
Fsouth= 242.7 lb
d= 130 ft
W= F*d
W= 31551 ft-lb
It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery