The equation of a parabola whose vertex is (0, 0) and focus is (1 / 8, 0) is equal to x = 2 · y².
<h3>How to derive the equation of the parabola from the locations of the vertex and focus</h3>
Herein we have the case of a parabola whose axis of symmetry is parallel to the x-axis. The <em>standard</em> form of the equation of this parabola is shown below:
(x - h) = [1 / (4 · p)] · (y - k)² (1)
Where:
- (h, k) - Coordinates of the vertex.
- p - Distance from the vertex to the focus.
The distance from the vertex to the focus is 1 / 8. If we know that the location of the vertex is (0, 0), then the <em>standard</em> form of the equation of the parabola is:
x = 2 · y² (1)
The equation of a parabola whose vertex is (0, 0) and focus is (1 / 8, 0) is equal to x = 2 · y².
To learn more on parabolae: brainly.com/question/4074088
#SPJ1
Answer:
122
Step-by-step explanation:
First we want to find how much it costs for 1 stamp, so we do 8.28 divided by 18, which equals 0.46. Then, we multiply 0.46 and 12, which is 5.52. Therefore, it would cost $5.52 to buy 12 stamps.
Answer:
Try Cone:)
Step-by-step explanation: