Answer:
a. 1/2
b. 5/3
c. 0
d. undefined
Step-by-step explanation:
Answer:
<em>LCM</em><em> </em><em>of</em><em> </em><em>12</em><em> </em><em>and</em><em> </em><em>10</em><em>=</em><em> </em><em>60</em>
<em>hope</em><em> </em><em>this helps</em><em> </em><em><</em><em>3</em>
Answer:
The rocket will reach its maximum height after 6.13 seconds
Step-by-step explanation:
To find the time of the maximum height of the rocket differentiate the equation of the height with respect to the time and then equate the differentiation by 0 to find the time of the maximum height
∵ y is the height of the rocket after launch, x seconds
∵ y = -16x² + 196x + 126
- Differentiate y with respect to x
∴ y' = -16(2)x + 196
∴ y' = -32x + 196
- Equate y' by 0
∴ 0 = -32x + 196
- Add 32x to both sides
∴ 32x = 196
- Divide both sides by 32
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
∴ The rocket will reach its maximum height after 6.13 seconds
There is another solution you can find the vertex point (h , k) of the graph of the quadratic equation y = ax² + bx + c, where h =
and k is the value of y at x = h and k is the maximum/minimum value
∵ a = -16 , b = 196
∴ 
∴ h = 6.125
∵ h is the value of x at the maximum height
∴ x = 6.125 seconds
- Round it to the nearest hundredth
∴ x = 6.13 seconds
1,3 should be the coordinates. I believe from the graph that has been given in the question
X is less then or equal to 1<u /><em /><u />